Duke Mathematical Journal

Metrics with nonnegative isotropic curvature

Mario J. Micallef and McKenzie Y. Wang

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Duke Math. J. Volume 72, Number 3 (1993), 649-672.

First available in Project Euclid: 20 February 2004

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 53C20: Global Riemannian geometry, including pinching [See also 31C12, 58B20]
Secondary: 53C21: Methods of Riemannian geometry, including PDE methods; curvature restrictions [See also 58J60]


Micallef, Mario J.; Wang, McKenzie Y. Metrics with nonnegative isotropic curvature. Duke Math. J. 72 (1993), no. 3, 649--672. doi:10.1215/S0012-7094-93-07224-9. http://projecteuclid.org/euclid.dmj/1077289625.

Export citation


  • [Bg1] M. Berger, Sur quelques variétés riemanniennes suffisamment pincées, Bull. Soc. Math. France 88 (1960), 57–71.
  • [Bg2] M. Berger, Pincement riemannien et pincement holomorphe, Ann. Scuola Norm. Sup. Pisa (3) 14 (1960), 151–159.
  • [Bg3] M. Berger, Sur les variétés à opérateur de courbure positif, C. R. Acad. Sci.Ser. Paris 253 (1961), 2832–2834.
  • [Bg4] M. Berger, Sur quelques variétés d'Einstein compactes, Ann. Mat. Pura Appl. (4) 53 (1961), 89–95.
  • [Be] A. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987.
  • [Bo] J. P. Bourguignon, Les variétés de dimension $4$ à signature non nulle dont la courbure est harmonique sont d'Einstein, Invent. Math. 63 (1981), no. 2, 263–286.
  • [D] A. Derdzinski, Self-dual Kähler manifolds and Einstein manifolds of dimension four, Compositio Math. 49 (1983), no. 3, 405–433.
  • [GK] S. Goldberg and S. Kobayashi, Holomorphic bisectional curvature, J. Differential Geometry 1 (1967), 225–233.
  • [GrL] M. Gromov and H. B. Lawson, The classification of simply connected manifolds of positive scalar curvature, Ann. of Math. (2) 111 (1980), no. 3, 423–434.
  • [H1] R. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), no. 2, 255–306.
  • [H2] R. Hamilton, Four-manifolds with positive curvature operator, J. Differential Geom. 24 (1986), no. 2, 153–179.
  • [He] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1978.
  • [Hi] N. Hitchin, Compact four-dimensional Einstein manifolds, J. Differential Geometry 9 (1974), 435–441.
  • [K] S. Kobayashi, On compact Kähler manifolds with positive definite Ricci tensor, Ann. of Math. (2) 74 (1961), 570–574.
  • [KN] S. Kobayashi and K. Nomizu, Foundations of differential geometry. Vol. II, Interscience Tracts in Pure and Applied Mathematics, No. 15 Vol. II, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1969.
  • [LMs] H. B. Lawson and M. L. Michelsohn, Spin geometry, Princeton Mathematical Series, vol. 38, Princeton University Press, Princeton, NJ, 1989.
  • [Le] C. LeBrun, On the topology of self-dual $4$-manifolds, Proc. Amer. Math. Soc. 98 (1986), no. 4, 637–640.
  • [MMr] M. Micallef and J. D. Moore, Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes, Ann. of Math. (2) 127 (1988), no. 1, 199–227.
  • [MWo] M. Micallef and J. Wolfson, The second variation of area of minimal surfaces in four-manifolds, Math. Ann. 295 (1993), no. 2, 245–267.
  • [MnR] Min-Oo Maung and E. Ruh, Curvature deformations, Curvature and topology of Riemannian manifolds (Katata, 1985), Lecture Notes in Math., vol. 1201, Springer, Berlin, 1986, pp. 180–190.
  • [P] A. Polombo, De nouvelles formules de Weitzenböck pour des endomorphismes harmoniques. Applications géométriques, Ann. Sci. École Norm. Sup. (4) 25 (1992), no. 4, 393–428.
  • [SY1] R. Schoen and S.-T. Yau, On the structure of manifolds with positive scalar curvature, Manuscripta Math. 28 (1979), no. 1-3, 159–183.
  • [SY2] R. Schoen and S.-T. Yau, Conformally flat manifolds, Kleinian groups and scalar curvature, Invent. Math. 92 (1988), no. 1, 47–71.
  • [Se] W. Seaman, On manifolds with nonnegative curvature on totally isotropic 2-planes, Trans. Amer. Math. Soc. 338 (1993), no. 2, 843–855.
  • [T] G. Tian, On Calabi's conjecture for complex surfaces with positive first Chern class, Invent. Math. 101 (1990), no. 1, 101–172.
  • [W] J. A. Wolf, Spaces of constant curvature, Publish or Perish Inc., Boston, Mass., 1977.
  • [Y1] S.-T. Yau, On the curvature of compact Hermitian manifolds, Invent. Math. 25 (1974), 213–239.
  • [Y2] S.-T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339–411.