Duke Mathematical Journal

A critical growth rate for the pluricomplex Green function

Siegfried Momm

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 72, Number 2 (1993), 487-502.

Dates
First available in Project Euclid: 20 February 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1077289429

Digital Object Identifier
doi:10.1215/S0012-7094-93-07218-3

Mathematical Reviews number (MathSciNet)
MR1248682

Zentralblatt MATH identifier
0830.31005

Subjects
Primary: 32F05
Secondary: 32A15: Entire functions 35R50: Partial differential equations of infinite order

Citation

Momm, Siegfried. A critical growth rate for the pluricomplex Green function. Duke Math. J. 72 (1993), no. 2, 487--502. doi:10.1215/S0012-7094-93-07218-3. http://projecteuclid.org/euclid.dmj/1077289429.


Export citation

References

  • [1] L. Ehrenpreis, Solution of some problems of division. IV. Invertible and elliptic operators, Amer. J. Math. 82 (1960), 522–588.
  • [2] L. Hörmander, On the range of convolution operators, Ann. of Math. (2) 76 (1962), 148–170.
  • [3] L. Hörmander, An introduction to complex analysis in several variables, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966.
  • [4] M. Klimek, Pluripotential theory, London Mathematical Society Monographs. New Series, vol. 6, The Clarendon Press Oxford University Press, New York, 1991.
  • [5] A. S. Krivosheev, A criterion for the solvability of nonhomogeneous convolution equations in convex domains of $\mathbbC^N$, Math. USSR-Izv. 36 (1991), 497–517.
  • [6] M. Langenbruch, Splitting of the $\overline\partial$-complex in weighted spaces of square integrable functions, Rev. Mat. Univ. Complut. Madrid 5 (1992), no. 2-3, 201–223.
  • [7] L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), no. 4, 427–474.
  • [8] B. J. Levin, Distribution of Zeros of Entire Functions, Transl. Math. Monographs, vol. 5, American Mathematical Society, Providence, R.I., 1964.
  • [9] A. Martineau, Équations différentielles d'ordre infini, Bull. Soc. Math. France 95 (1967), 109–154.
  • [10] R. Meise and B. A. Taylor, Splitting of closed ideals in $(\rm DFN)$-algebras of entire functions and the property $(\rm DN)$, Trans. Amer. Math. Soc. 302 (1987), no. 1, 341–370.
  • [11] R. Meise and B. A. Taylor, Each nonzero convolution operator on the entire functions admits a continuous linear right inverse, Math. Z. 197 (1988), no. 1, 139–152.
  • [12] R. Meise and D. Vogt, Einführung in die Funktionalanalysis, Vieweg Studium: Aufbaukurs Mathematik [Vieweg Studies: Mathematics Course], vol. 62, Friedr. Vieweg & Sohn, Braunschweig, 1992.
  • [13] S. Momm, Partial differential operators of infinite order with constant coefficients on the space of analytic functions on the polydisc, Studia Math. 96 (1990), no. 1, 51–71.
  • [14] S. Momm, Convex univalent functions and continuous linear right inverses, J. Funct. Anal. 103 (1992), no. 1, 85–103.
  • [15] S. Momm, A division problem in the space of entire functions of exponential type, to appear in Ark. Mat.
  • [16] S. Momm, Division problems in spaces of entire functions of finite order, to appear in Functional Analysis, ed. by Bierstedt, Pietsch, Ruess, and Vogt, Marcel Dekker, New York.
  • [17] S. Momm, Boundary behavior of extremal plurisubharmonic functions, preprint.
  • [18] V. V. Morzhakov, On epimorphicity of a convolution operator in convex domains in $\mathbbC^N$, Math. USSR-Sb. 60 (1988), 347–364.
  • [19] R. T. Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J., 1970.
  • [20] W. Rudin, Real and complex analysis, Third edition ed., McGraw-Hill Book Co., New York, 1987.
  • [21] K. Schwerdtfeger, Faltungsoperatoren auf Räumen holomorpher und beliebig oft differenzierbarer Funktionen, thesis, Düsseldorf, 1982.
  • [22] J. Siciak, Extremal plurisubharmonic functions in $\bf C\spn$, Ann. Polon. Math. 39 (1981), 175–211.
  • [23] R. Sigursson, Convolution equations in domains of $\bf C\sp n$, Ark. Mat. 29 (1991), no. 2, 285–305.
  • [24] B. A. Taylor, Linear extension operators for entire functions, Michigan Math. J. 29 (1982), no. 2, 185–197.
  • [25] F. Tréves, Linear partial differential equations with constant coefficients: Existence, approximation and regularity of solutions, Mathematics and its Applications, vol. 6, Gordon and Breach Science Publishers, New York, 1966.