Duke Mathematical Journal

Kleinian groups with small limit sets

Richard D. Canary and Edward Taylor

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 73, Number 2 (1994), 371-381.

Dates
First available in Project Euclid: 20 February 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1077288815

Digital Object Identifier
doi:10.1215/S0012-7094-94-07316-X

Mathematical Reviews number (MathSciNet)
MR1262211

Zentralblatt MATH identifier
0798.30030

Subjects
Primary: 57M50: Geometric structures on low-dimensional manifolds
Secondary: 20H10: Fuchsian groups and their generalizations [See also 11F06, 22E40, 30F35, 32Nxx] 30F40

Citation

Canary, Richard D.; Taylor, Edward. Kleinian groups with small limit sets. Duke Math. J. 73 (1994), no. 2, 371--381. doi:10.1215/S0012-7094-94-07316-X. http://projecteuclid.org/euclid.dmj/1077288815.


Export citation

References

  • [1] W. Abikoff, The residual limit sets of Kleinian groups, Acta Math. 130 (1973), 127–144.
  • [2] W. Abikoff and B. Maskit, Geometric decompositions of Kleinian groups, Amer. J. Math. 99 (1977), no. 4, 687–697.
  • [3] L. V. Ahlfors, The structure of a finitely generated Kleinian group, Acta Math. 122 (1969), 1–17.
  • [4] L. V. Ahlfors and A. Beurling, Conformal invariants and function-theoretic null sets, Acta Math. 83 (1950), 101–129.
  • [5] A. Beardon, The Hausdorff dimension of singular sets of properly discontinuous groups, Amer. J. Math. 88 (1966), 722–736.
  • [6] F. Bonahon, Cobordism of automorphisms of surfaces, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 2, 237–270.
  • [7] F. Bonahon, Bouts des variétés hyperboliques de dimension $3$, Ann. of Math. (2) 124 (1986), no. 1, 71–158.
  • [8] R. Bowen, Hausdorff dimension of quasi-circles, Inst. Hautes Études Sci. Publ. Math. (1979), no. 50, 11–25.
  • [9] P. Braam, A Kaluza-Klein approach to hyperbolic three-manifolds, Enseign. Math. (2) 34 (1988), no. 3-4, 275–311.
  • [10] M. Burger and R. D. Canary, A lower bound on $\lambda_0$ for geometrically finite hyperbolic $n$-manifolds, to appear in Crellis Math. J.
  • [11] R. D. Canary, On the Laplacian and the geometry of hyperbolic $3$-manifolds, J. Differential Geom. 36 (1992), no. 2, 349–367.
  • [12] R. D. Canary and D. McCullough, in preparation.
  • [13] V. Chuckrow, Subgroups and automorphisms of extended Schottky type groups, Trans. Amer. Math. Soc. 150 (1970), 121–129.
  • [14] H. Furusawa, The exponent of convergence of Poincaré series of combination groups, Tohoku Math. J. (2) 43 (1991), no. 1, 1–7.
  • [15] J. Hempel, $3$-manifolds, Ann. of Math. Stud., vol. 86, Princeton Univ. Press, Princeton, 1976.
  • [16] T. Jorgensen and A. Marden, Algebraic and geometric convergence of Kleinian groups, Math. Scand. 66 (1990), no. 1, 47–72.
  • [17] A. Marden, The geometry of finitely generated kleinian groups, Ann. of Math. (2) 99 (1974), 383–462.
  • [18] B. Maskit, Decomposition of certain Kleinian groups, Acta Math. 130 (1973), 243–263.
  • [19] B. Maskit, Kleinian Groups, Grundlehren Math. Wiss., vol. 287, Springer-Verlag, Berlin, 1988.
  • [20] D. McCullough and A. Miller, Homeomorphisms of $3$-manifolds with compressible boundary, Mem. Amer. Math. Soc. 61 (1986), no. 344, xii+100.
  • [21] S. J. Patterson, The exponent of convergence of Poincaré series, Monatsh. Math. 82 (1976), no. 4, 297–315.
  • [22] S. J. Patterson, Lectures on measures on limit sets of Kleinian groups, Analytical and Geometric Aspects of Hyperbolic Space (Coventry/Durham, 1984), London Math. Soc. Lecture Note Ser., vol. 111, Cambridge Univ. Press, Cambridge, 1987, pp. 281–323.
  • [23] R. Schoen and S. T. Yau, Conformally flat manifolds, Kleinian groups, and scalar curvature, Invent. Math. 92 (1988), no. 1, 47–71.
  • [24] A. Selberg, On discontinuous groups in higher-dimensional symmetric spaces, Contributions to Function Theory (internat. Colloq. Function Theory, Bombay, 1960), Tata Inst. of Fundamental Research, Bombay, 1960, pp. 147–164.
  • [25] T. Soma, Function groups in Kleinian groups, Math. Ann. 292 (1992), no. 1, 181–190.
  • [26] D. Sullivan, The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 171–202.
  • [27] D. Sullivan, Discrete conformal groups and measurable dynamics, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 1, 57–73.
  • [28] D. Sullivan, Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math. 153 (1984), no. 3-4, 259–277.
  • [29] D. Sullivan, Related aspects of positivity in Riemannian geometry, J. Differential Geom. 25 (1987), no. 3, 327–351.
  • [30] P. Susskind and G. A. Swarup, Limit sets of geometrically finite hyperbolic groups, Amer. J. Math. 114 (1992), no. 2, 233–250.
  • [31] W. Thurston, Hyperbolic structures on $3$-manifolds, II: Surface groups and $3$-manifolds which fiber over the circle, preprint.