Duke Mathematical Journal

Koszul duality for operads

Victor Ginzburg and Mikhail Kapranov

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 76, Number 1 (1994), 203-272.

Dates
First available in Project Euclid: 20 February 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1077286744

Digital Object Identifier
doi:10.1215/S0012-7094-94-07608-4

Mathematical Reviews number (MathSciNet)
MR1301191

Zentralblatt MATH identifier
0855.18006

Subjects
Primary: 18D10: Monoidal categories (= multiplicative categories), symmetric monoidal categories, braided categories [See also 19D23]
Secondary: 14H10: Families, moduli (algebraic) 16S99: None of the above, but in this section 18G50: Nonabelian homological algebra 55P47: Infinite loop spaces

Citation

Ginzburg, Victor; Kapranov, Mikhail. Koszul duality for operads. Duke Math. J. 76 (1994), no. 1, 203--272. doi:10.1215/S0012-7094-94-07608-4. http://projecteuclid.org/euclid.dmj/1077286744.


Export citation

References

  • [1] J. F. Adams, Infinite loop spaces, Annals of Mathematics Studies, vol. 90, Princeton University Press, Princeton, N.J., 1978.
  • [2] V. I. Arnold, On the representation of continuous functions of three variables by superpositions of continuous functions of two variables, Mat. Sb. (N.S.) 48 (90) (1959), 3–74.
  • [3] V. I. Arnold, Topological invariants of algebraic functions II, Funct. Anal. Appl. 4 (1970), 91–98.
  • [4] H. Bass, E. H. Connell, and D. Wright, The Jacobian conjecture: reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 2, 287–330.
  • [5] A. A. Beilinson, Coherent sheaves on $P^n$ and problems in linear algebra, Funct. Anal. Appl. 12 (1978), 214–216.
  • [6] I. N. Bernstein, I. M. Gelfand, and S. I. Gelfand, Algebraic vector bundles on $P^n$ and problems of linear algebra, Funct. Anal. Appl. 12 (1978), 212–214.
  • [7] A. A. Beilinson, V. A. Ginsburg, and V. V. Schechtman, Koszul duality, J. Geom. Phys. 5 (1988), no. 3, 317–350.
  • [8] A. Beilinson, V. Ginzburg, and W. Soergel, Koszul duality patterns in representation theory, to appear in J. Amer. Math. Soc.
  • [9] A. Beilinson and V. Ginzburg, Infinitesimal structure of moduli spaces of $G$-bundles, Internat. Math. Res. Notices (1992), no. 4, 63–74.
  • [10] A. Beilinson and V. Ginzburg, Resolution of diagonals homotopy algebra and moduli spaces, preprint.
  • [11] J. M. Boardman and R. M. Vogt, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Mathematics, vol. 347, Springer-Verlag, Berlin, 1973.
  • [12] F. R. Cohen, The homology of $C_(n+1)$-spaces, Homology of Iterated Loop Spaces, Lecture Notes in Math., vol. 533, Springer-Verlag, Berlin, 1976, pp. 207–351.
  • [13] P. Deligne, Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. (1971), no. 40, 5–57.
  • [14] P. Deligne, Resumé des premiérs exposés de A. Grothendieck, Groupes de Monodromie en Géométrie Algébrique, Lecture Notes in Math., vol. 288, Springer-Verlag, Berlin, 1972, pp. 1–24.
  • [15] P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. (2) 103 (1976), no. 1, 103–161.
  • [16] P. Deligne and G. Lusztig, Duality for representations of a reductive group over a finite field, J. Algebra 74 (1982), no. 1, 284–291.
  • [17] P. Deligne and G. Lusztig, Duality for representations of a reductive group over a finite field. II, J. Algebra 81 (1983), no. 2, 540–545.
  • [18] V. G. Drinfeld, letter to V. V. Schechtman, unpublished, Septembre, 1988.
  • [19] H. Esnault, V. Schechtman, and E. Viehweg, Cohomology of local systems on the complement of hyperplanes, Invent. Math. 109 (1992), no. 3, 557–561.
  • [20] Z. Fiedorowicz, The symmetric bar-construction, preprint, 1991.
  • [21] W. Fulton and R. MacPherson, A compactification of configuration spaces, Ann. of Math. (2) 139 (1994), no. 1, 183–225.
  • [22] E. Getzler, Batalin-Vilkovisky algebras and two-dimensional topological field theories, Comm. Math. Phys. 159 (1994), no. 2, 265–285.
  • [23] E. Getzler and J. D. S. Jones, Operads, homotopy algebra and iterated integrals for double loop spaces, preprint, 1994.
  • [24] R. Godement, Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1973.
  • [25] I. J. Good, Generalizations to several variables of Lagrange's expansion, with applications to stochastic processes, Proc. Cambridge Philos. Soc. 56 (1960), 367–380.
  • [26] M. Goresky and R. MacPherson, Stratified Morse theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 14, Springer-Verlag, Berlin, 1988.
  • [27] V. A. Hinich and V. V. Schectman, On homotopy limit of homotopy algebras, $K$-theory, arithmetic and geometry (Moscow, 1984–1986), Lecture Notes in Math., vol. 1289, Springer, Berlin, 1987, pp. 240–264.
  • [28] V. Hinich and V. Schechtman, Homotopy Lie algebras, I. M. Gelfand Seminar, Adv. Soviet Math., vol. 16, Amer. Math. Soc., Providence, RI, 1993, pp. 1–28.
  • [29] S. A. Joni, Lagrange inversion in higher dimensions and umbral operators, Linear and Multilinear Algebra 6 (1978/79), no. 2, 111–122.
  • [30] M. M. Kapranov, On the derived categories and the $K$-functor of coherent sheaves on intersections of quadrics, Math. USSR-Izv. 32 (1989), 191–204.
  • [31] M. M. Kapranov, Veronese curves and Grothendieck-Knudsen moduli space $\overline M\sb 0,n$, J. Algebraic Geom. 2 (1993), no. 2, 239–262.
  • [32] M. M. Kapranov, Chow quotients of Grassmannians. I, I. M. Gelfand Seminar, Adv. Soviet Math., vol. 16, Amer. Math. Soc., Providence, RI, 1993, pp. 29–110.
  • [33] M. M. Kapranov, On the derived categories of coherent sheaves on some homogeneous spaces, Invent. Math. 92 (1988), no. 3, 479–508.
  • [34] M. Kashiwara and P. Schapira, Sheaves on manifolds, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 292, Springer-Verlag, Berlin, 1990.
  • [35] A. A. Klyachko, Lie elements in the tensor algebra, Siberian Math. J. 15 (1974), 914–920.
  • [36] F. F. Knudsen, The projectivity of the moduli space of stable curves. II. The stacks $M\sbg,n$, Math. Scand. 52 (1983), no. 2, 161–199.
  • [37] A. N. Kolmogorov, On the representation of continuous functions of several variables by superpositions of continuous functions of a smaller number of variables, Dokl. Akad. Nauk SSSR (N.S.) 108 (1956), 179–182, (in Russian); reprinted in Selected Works of A. N. Kolmogorov, Vol. I, ed. by V. Tikhomirov, Kluwer, Dordrecht, 1991, 378–382.
  • [38] M. Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys. 147 (1992), no. 1, 1–23.
  • [39] M. Kontsevich, Formal (non)commutative symplectic geometry, The Gelfand Mathematical Seminars, 1990–1992 eds. L. Crowin, I. Gelfand, and J. Lepowsky, Birkhäuser Boston, Boston, MA, 1993, pp. 173–187.
  • [40] M. Kontsevich, Graphs, homotopy Lie and low-dimensional topology, preprint, 1992.
  • [41] I. Kriz and J. P. May, Oprads, algebras and modules I, preprint, 1993.
  • [42] I. Kriz and J. P. May, Differential graded algebras up to homotopy and their derived categories, preprint, 1992.
  • [43] M. Lazard, Lois de groupes et analyseurs, Ann. Sci. Ecole Norm. Sup. (3) 72 (1955), 299–400.
  • [44] B. Lian and G. Zuckerman, New perspectives on the BRST-Algebraic structures of string theory, preprint, 1992.
  • [45] J.-L. Loday, Cyclic homology, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 301, Springer-Verlag, Berlin, 1992.
  • [46] C. Löfwall, On the subalgebra generated by the one-dimensional elements in the Yoneda Ext-algebra, Algebra, algebraic topology and their interactions (Stockholm, 1983), Lecture Notes in Math., vol. 1183, Springer, Berlin, 1986, pp. 291–338.
  • [47] G. Lusztig, The discrete Series of $GL\sbn$ over a Finite Field, Annals of Mathematics Studies, vol. 81, Princeton University Press, Princeton, N.J., 1974.
  • [48] J. H. McKay, J. Towber, S. S.-S. Wang, and D. Wright, Reversion of a system of power series with application to combinatorics, preprint, 1992.
  • [49]1 Saunders Mac Lane, Natural associativity and commutativity, Rice Univ. Studies 49 (1963), no. 4, 28–46.
  • [49]2 Saunders Mac Lane, Selected papers, Springer-Verlag, New York, 1979.
  • [50] I. G. Macdonald, Symmetric functions and Hall polynomials, The Clarendon Press Oxford University Press, New York, 1979.
  • [51] Y. I. Manin, Some remarks on Koszul algebras and quantum groups, Ann. Inst. Fourier (Grenoble) 37 (1987), no. 4, 191–205.
  • [52] J. P. May, The Geometry of Iterated Loop Spaces, Lectures Notes in Mathematics, vol. 271, Springer-Verlag, Berlin, 1972.
  • [53] J. C. Moore, Differential homological algebra, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1, Gauthier-Villars, Paris, 1971, pp. 335–339.
  • [54] R. C. Penner, The decorated Teichmüller space of punctured surfaces, Comm. Math. Phys. 113 (1987), no. 2, 299–339.
  • [55] S. B. Priddy, Koszul resolutions, Trans. Amer. Math. Soc. 152 (1970), 39–60.
  • [56] D. Quillen, Rational homotopy theory, Ann. of Math. (2) 90 (1969), 205–295.
  • [57] D. Quillen, On the (co-) homology of commutative rings, Applications of Categorical Algebra (Proc. Sympos. Pure Math., Vol. XVII, New York, 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 65–87.
  • [58] V. V. Schechtman and A. N. Varchenko, Arrangements of hyperplanes and Lie algebra homology, Invent. Math. 106 (1991), no. 1, 139–194.
  • [59] M. Schlessinger and J. Stasheff, The Lie algebra structure of tangent cohomology and deformation theory, J. Pure Appl. Algebra 38 (1985), no. 2-3, 313–322.
  • [60] J. D. Stasheff, Homotopy associativity of $H$-spaces. I, II, Trans. Amer. Math. Soc. 108 (1963), 275-292; ibid. 108 (1963), 293–312.
  • [61] J. J. Sylvester, On the change of systems of independent variables, Quart. J. Math. 1 (1857), 42–56.
  • [62] D. Wright, The tree formulas for reversion of power series, J. Pure Appl. Algebra 57 (1989), no. 2, 191–211.

See also

  • See also: V. Ginzburg, M. Kapranov. Erratum to “Koszul duality for operads,” vol. 76 (1994) pp. 203–272. Duke Math. J. Vol. 80, No. 1 (1995), pp. 293–293.