Duke Mathematical Journal

Raghunathan’s conjectures for Cartesian products of real and $\mathfrak{p}$-adic Lie groups

Marina Ratner

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 77, Number 2 (1995), 275-382.

Dates
First available: 20 February 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1077286345

Mathematical Reviews number (MathSciNet)
MR1321062

Zentralblatt MATH identifier
0914.22016

Digital Object Identifier
doi:10.1215/S0012-7094-95-07710-2

Subjects
Primary: 22E40: Discrete subgroups of Lie groups [See also 20Hxx, 32Nxx]
Secondary: 22E50: Representations of Lie and linear algebraic groups over local fields [See also 20G05]

Citation

Ratner, Marina. Raghunathan’s conjectures for Cartesian products of real and 𝔭 -adic Lie groups. Duke Mathematical Journal 77 (1995), no. 2, 275--382. doi:10.1215/S0012-7094-95-07710-2. http://projecteuclid.org/euclid.dmj/1077286345.


Export citation

References

  • [B] A. Borel, Linear Algebraic Groups, 2nd enl. ed., Graduate Texts in Math., vol. 126, Springer-Verlag, New York, 1991.
  • [BP] A. Borel and G. Prasad, Values of isotropic quadratic forms at $S$-integral points, Compositio Math. 83 (1992), no. 3, 347–372.
  • [D1] S. G. Dani, A simple proof of Borel's density theorem, Math. Z. 174 (1980), no. 1, 81–94.
  • [D2] S. G. Dani, On orbits of unipotent flows on homogeneous spaces. II, Ergodic Theory Dynam. Systems 6 (1986), no. 2, 167–182.
  • [DM] S. G. Dani and G. A. Margulis, Limit distributions of orbits of unipotent flows and values of quadratic forms, I. M. Gelfand Seminar, Adv. Soviet Math, vol. 16, Amer. Math. Soc., Providence, 1993, pp. 91–137.
  • [DSMS] J. D. Dixon, M. P. F. du Sautoy, A. Mann, and D. Segal, Analytic Pro-$p$ Groups, London Math. Soc. Lecture Note Ser., vol. 157, Cambridge Univ. Press, Cambridge, 1991.
  • [J] N. Jacobson, Lie Algebras, Dover, New York, 1979.
  • [M1] G. A. Margulis, Discrete Subgroups of Semisimple Lie Groups, Ergeb. Math. Grenzgeb (3), vol. 17, Springer-Verlag, Berlin, 1991.
  • [M2] G. A. Margulis, Discrete subgroups and ergodic theory, Number Theory, Trace Formulas and Discrete Groups (Oslo, 1987), Academic Press, Boston, 1989, pp. 377–398.
  • [MT] G. A. Margulis and G. M. Tomanov, Invariant measures for actions of unipotent groups over local fields on homogeneous spaces, Invent. Math. 116 (1994), no. 1-3, 347–392.
  • [P] G. Prasad, Ratner's theorem in $S$-arithmetic setting, Workshop on Lie Groups, Ergodic Theory and Geometry, Math. Sci. Res. Inst. Publ., Springer-Verlag, New York, 1992, p. 53.
  • [Ra] M. S. Raghunathan, Discrete Subgroups of Lie Groups, Ergeb. Math. Grenzgeb., vol. 68, Springer-Verlag, New York, 1972.
  • [R1] M. Ratner, Strict measure rigidity for unipotent subgroups of solvable groups, Invent. Math. 101 (1990), no. 2, 449–482.
  • [R2] M. Ratner, On measure rigidity of unipotent subgroups of semisimple groups, Acta Math. 165 (1990), no. 3-4, 229–309.
  • [R3] M. Ratner, On Raghunathan's measure conjecture, Ann. of Math. (2) 134 (1991), no. 3, 545–607.
  • [R4] M. Ratner, Raghunathan's topological conjecture and distributions of unipotent flows, Duke Math. J. 63 (1991), no. 1, 235–280.
  • [R5] M. Ratner, Invariant measures and orbit closures for unipotent actions on homogeneous spaces, Geom. Funct. Anal. 4 (1994), no. 2, 236–257.
  • [R6] M. Ratner, Raghunathan's conjectures for $p$-adic Lie groups, Internat. Math. Res. Notices (1993), no. 5, 141–146.
  • [S] J.-P. Serre, Lie Algebras and Lie Groups, Lectures given at Harvard University, vol. 1964, Benjamin, New York-Amsterdam, 1965.
  • [T] T. Tamagawa, On discrete subgroups of $p$-adic algebraic groups, Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963), Harper and Row, New York, 1965, pp. 11–17.
  • [Te] A. Tempelman, Ergodic Theorems for Group Actions, Math. Appl., vol. 78, Kluwer, Dordrecht, 1992.
  • [V] B. L. Van der Waerden, Modern Algebra, Frederick Ungar Publ. Co., New York, 1953.
  • [W] D. Witte, Zero-entropy affine maps on homogeneous spaces, Amer. J. Math. 109 (1987), no. 5, 927–961.