Duke Mathematical Journal

Automorphic induction for $GL(n)$ (over local nonarchimedean fields)

Guy Henniart and Rebecca Herb

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 78, Number 1 (1995), 131-192.

Dates
First available in Project Euclid: 20 February 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1077285552

Digital Object Identifier
doi:10.1215/S0012-7094-95-07807-7

Mathematical Reviews number (MathSciNet)
MR1328755

Zentralblatt MATH identifier
0849.11092

Subjects
Primary: 22E50: Representations of Lie and linear algebraic groups over local fields [See also 20G05]
Secondary: 11F70: Representation-theoretic methods; automorphic representations over local and global fields 11S37: Langlands-Weil conjectures, nonabelian class field theory [See also 11Fxx, 22E50]

Citation

Henniart, Guy; Herb, Rebecca. Automorphic induction for G L ( n ) (over local nonarchimedean fields). Duke Math. J. 78 (1995), no. 1, 131--192. doi:10.1215/S0012-7094-95-07807-7. http://projecteuclid.org/euclid.dmj/1077285552.


Export citation

References

  • [A] J. Arthur, On elliptic tempered characters, Acta Math. 171 (1993), no. 1, 73–138.
  • [AC] J. Arthur and L. Clozel, Simple algebras, base change, and the advanced theory of the trace formula, Annals of Mathematics Studies, vol. 120, Princeton University Press, Princeton, NJ, 1989.
  • [B] J. Bernstein, $P$-invariant distributions on ${\rm GL}(N)$ and the classification of unitary representations of ${\rm GL}(N)$ (non-Archimedean case), Lie group representations, II (College Park, Md., 1982/1983), Lecture Notes in Math., vol. 1041, Springer, Berlin, 1984, pp. 50–102.
  • [BDKV] J. Bernstein, P. Deligne, D. Kazhdan, and M. F. Vignéras, Représentations des algèbres centrales simples $p$-adiques, Representations of reductive groups over a local field, Travaux en Cours, Hermann, Paris, 1984, pp. 33–117.
  • [BZ] J. Bernstein and A. V. Zelevinsky, Induced representations of reductive ${\germ p}$-adic groups. I, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 4, 441–472.
  • [BK] C. Bushnell and P. Kutzko, The admissible dual of ${\rm GL}(N)$ via compact open subgroups, Annals of Mathematics Studies, vol. 129, Princeton University Press, Princeton, NJ, 1993.
  • [Ca] H. Carayol, Représentations cuspidales du groupe linéaire, Ann. Sci. École Norm. Sup. (4) 17 (1984), no. 2, 191–225.
  • [Cl1] L. Clozel, Théorème d'Atiyah-Bott pour les variétés ${\germ p}$-adiques et caractères des groupes réductifs, Mém. Soc. Math. France (N.S.) (1984), no. 15, 39–64.
  • [Cl2] L. Clozel, Motifs et formes automorphes: applications du principe de fonctorialité, Automorphic forms, Shimura varieties, and $L$-functions, Vol. I (Ann Arbor, MI, 1988), Perspect. Math., vol. 10, Academic Press, Boston, MA, 1990, pp. 77–159.
  • [D] P. Deligne, Les corps locaux de caractéristique $p$, limites de corps locaux de caractéristique $0$, Representations of reductive groups over a local field, Travaux en Cours, Hermann, Paris, 1984, pp. 119–157.
  • [Ft] D. Flath, A comparison of the automorphic representations of ${\rm GL}(3)$ and its twisted forms, Pacific J. Math. 97 (1981), no. 2, 373–402.
  • [Fk] Y. Flicker, On endo-lifting, Compositio Math. 67 (1988), no. 3, 271–300.
  • [GK] S. Gelbart and A. Knapp, $L$-indistinguishability and $R$ groups for the special linear group, Adv. in Math. 43 (1982), no. 2, 101–121.
  • [Ge] P. Gérardin, Cuspidal unramified series for central simple algebras over local fields, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 157–169.
  • [Go] D. Goldberg, $R$-groups and elliptic representations for $SL_{n}$, to appear in Pacific J. Math.
  • [Ha] T. Hales, Unipotent representations and unipotent classes in ${\rm SL}(n)$, Amer. J. Math. 115 (1993), no. 6, 1347–1383.
  • [HC1] Harish-Chandra, Harmonic analysis on reductive $p$-adic groups, Lecture Notes in Mathematics, vol. 162, Springer-Verlag, Berlin, 1970.
  • [HC2] Harish-Chandra, Harmonic analysis on real reductive groups. I. The theory of the constant term, J. Functional Analysis 19 (1975), 104–204.
  • [HC3] Harish-Chandra, Admissible invariant distributions on reductive $p$-adic groups, Lie theories and their applications (Proc. Ann. Sem. Canad. Math. Congr., Queen's Univ., Kingston, Ont., 1977), Queen's Univ., Kingston, Ont., 1978, 281–347. Queen's Papers in Pure Appl. Math., No. 48.
  • [HC4] Harish-Chandra, A submersion principle and its applications, Geometry and analysis, Indian Acad. Sci., Bangalore, 1980, pp. 95–102.
  • [Hn1] G. Henniart, La conjecture de Langlands locale pour ${\rm GL}(3)$, Mém. Soc. Math. France (N.S.) (1984), no. 11-12, 186.
  • [Hn2] G. Henniart, On the local Langlands conjecture for ${\rm GL}(n)$: the cyclic case, Ann. of Math. (2) 123 (1986), no. 1, 145–203.
  • [Hn3] G. Henniart, La conjecture de Langlands locale numérique pour ${\rm GL}(n)$, Ann. Sci. École Norm. Sup. (4) 21 (1988), no. 4, 497–544.
  • [Hn4] G. Henniart, Un lemme fondamental pour l'induction automorphe, preprint.
  • [Hn5] G. Henniart, Correspondance de Jacquet-Langlands en caractéristique $p$, in preparation.
  • [Hr] R. Herb, Matching theorems for twisted orbital integrals, to appear in Pacific J. Math.
  • [Ho1] R. Howe, The Fourier transform and germs of characters (case of ${\rm Gl}\sb{n}$ over a $p$-adic field), Math. Ann. 208 (1974), 305–322.
  • [Ho2] R. Howe, Harish-Chandra homomorphisms for ${\germ p}$-adic groups, CBMS Regional Conference Series in Mathematics, vol. 59, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1985.
  • [JL] H. Jacquet and R. P. Langlands, Automorphic forms on ${\rm GL}(2)$, Lecture Notes in Math., vol. 114, Springer-Verlag, Berlin, 1970, vii+548.
  • [JPSS1] H. Jacquet, I. I. Piatetskii-Shapiro, and J. Shalika, Rankin-Selberg convolutions, Amer. J. Math. 105 (1983), no. 2, 367–464.
  • [JPSS2] H. Jacquet, I. I. Piatetski-Shapiro, and J. Shalika, Relèvement cubique non normal, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 12, 567–571.
  • [JPSS3] H. Jacquet, I. I. Piatetski-Shapiro, and J. Shalika, Conducteur des représentations du groupe linéaire, Math. Ann. 256 (1981), no. 2, 199–214.
  • [JS1] H. Jacquet and J. Shalika, The Whittaker models of induced representations, Pacific J. Math. 109 (1983), no. 1, 107–120.
  • [JS2] H. Jacquet and J. Shalika, On Euler products and the classification of automorphic forms. II, Amer. J. Math. 103 (1981), no. 4, 777–815.
  • [JS3] H. Jacquet and J. Shalika, Rankin-Selberg convolutions: Archimedean theory, Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part I (Ramat Aviv, 1989), Israel Math. Conf. Proc., vol. 2, Weizmann, Jerusalem, 1990, pp. 125–207.
  • [Ka1] D. Kazhdan, On lifting, Lie group representations, II (College Park, Md., 1982/1983), Lecture Notes in Math., vol. 1041, Springer, Berlin, 1984, pp. 209–249.
  • [Ka2] D. Kazhdan, Cuspidal geometry of $p$-adic groups, J. Analyse Math. 47 (1986), 1–36.
  • [KS] R. Kottwitz and D. Shelstad, Twisted endoscopy I: Definitions, norm mappings, and transfer factors, preprint.
  • [Ku] P. Kutzko, The Langlands conjecture for ${\rm Gl}\sb{2}$ of a local field, Ann. of Math. (2) 112 (1980), no. 2, 381–412.
  • [La] R. P. Langlands, On Artin's $L$-function, Rice University Studies, vol. 56, Houston, Rice University, 1971, 23–28.
  • [LRS] G. Laumon, M. Rapoport, and U. Stuhler, ${\scr D}$-elliptic sheaves and the Langlands correspondence, Invent. Math. 113 (1993), no. 2, 217–338.
  • [Lm] B. Lemaire Ph.D. thesis, University of Paris XI, February 8 1994.
  • [RD1] F. Rodier, Intégrabilité locale des caractères du groupe ${\rm GL}(n,k)$ où $k$ est un corps local de caractéristique positive, Duke Math. J. 52 (1985), no. 3, 771–792.
  • [RD2] F. Rodier, Représentations de ${\rm GL}(n,\,k)$ où $k$ est un corps $p$-adique, Bourbaki Seminar, Vol. 1981/1982, Astérisque, vol. 92, Soc. Math. France, Paris, 1982, pp. 201–218.
  • [RD3] F. Rodier, Whittaker models for admissible representations of reductive $p$-adic split groups, Harmonic analysis on homogeneous spaces (Proc. Sympos. Pure Math., Vol. XXVI, Williams Coll., Williamstown, Mass., 1972), Amer. Math. Soc., Providence, R.I., 1973, pp. 425–430.
  • [Rg1] J. Rogawski, Representations of ${\rm GL}(n)$ and division algebras over a $p$-adic field, Duke Math. J. 50 (1983), no. 1, 161–196.
  • [Rg2] J. Rogawski, Trace Paley-Wiener theorem in the twisted case, Trans. Amer. Math. Soc. 309 (1988), no. 1, 215–229.
  • [Sh1] F. Shahidi, On certain $L$-functions, Amer. J. Math. 103 (1981), no. 2, 297–355.
  • [Sh2] F. Shahidi, Some results on $L$-indistinguishability for ${\rm SL}(r)$, Canad. J. Math. 35 (1983), no. 6, 1075–1109.
  • [Sh3] F. Shahidi, Fourier transforms of intertwining operators and Plancherel measures for ${\rm GL}(n)$, Amer. J. Math. 106 (1984), no. 1, 67–111.
  • [Sh4] F. Shahidi, Local coefficients as Artin factors for real groups, Duke Math. J. 52 (1985), no. 4, 973–1007.
  • [Si] A. Silberger, Introduction to harmonic analysis on reductive $p$-adic groups, Mathematical Notes, vol. 23, Princeton University Press, Princeton, N.J., 1979.
  • [T1] M. Tadic, Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case), Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 3, 335–382.
  • [T2] M. Tadic, Notes on representations of non-Archimedean ${\rm SL}(n)$, Pacific J. Math. 152 (1992), no. 2, 375–396.
  • [W] J. L. Waldspurger, Sur les intégrales orbitales tordues pour les groupes linéaires: un lemme fondamental, Canad. J. Math. 43 (1991), no. 4, 852–896.
  • [Z] A. Zelevinsky, Induced representations of reductive ${\germ p}$-adic groups. II. On irreducible representations of ${\rm GL}(n)$, Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 2, 165–210.