Duke Mathematical Journal

On the distribution of zeros of linear combinations of Euler products

E. Bombieri and D. A. Hejhal

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 80, Number 3 (1995), 821-862.

Dates
First available in Project Euclid: 19 February 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1077246295

Digital Object Identifier
doi:10.1215/S0012-7094-95-08028-4

Mathematical Reviews number (MathSciNet)
MR1370117

Zentralblatt MATH identifier
0853.11074

Subjects
Primary: 11M26: Nonreal zeros of $\zeta (s)$ and $L(s, \chi)$; Riemann and other hypotheses

Citation

Bombieri, E.; Hejhal, D. A. On the distribution of zeros of linear combinations of Euler products. Duke Math. J. 80 (1995), no. 3, 821--862. doi:10.1215/S0012-7094-95-08028-4. http://projecteuclid.org/euclid.dmj/1077246295.


Export citation

References

  • [Bi86] P. Billingsley, Probability and measure, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons Inc., New York, 1986.
  • [BH87] E. Bombieri and D. A. Hejhal, On the zeros of Epstein zeta functions, C. R. Acad. Sci. Paris Sér. I Math. 304 (1987), no. 9, 213–217.
  • [Bu89] D. Bump, The Rankin-Selberg method: a survey, Number theory, trace formulas and discrete groups (Oslo, 1987) eds. K. E. Aubert, E. Bombieri, and D. Goldfeld, Academic Press, Boston, MA, 1989, pp. 49–109.
  • [CG93] A. Cheer and D. Goldston, Simple zeros of the Riemann zeta-function, Proc. Amer. Math. Soc. 118 (1993), no. 2, 365–372.
  • [GJ72] R. Godement and H. Jacquet, Zeta functions of simple algebras, Lecture Notes in Mathematics, vol. 260, Springer-Verlag, Berlin, 1972.
  • [Fu74] A. Fujii, On the zeros of Dirichlet $L$-functions. I, Trans. Amer. Math. Soc. 196 (1974), 225–235.
  • [Ha83] J. L. Hafner, Zeros on the critical line for Dirichlet series attached to certain cusp forms, Math. Ann. 264 (1983), no. 1, 21–37.
  • [He86] D. A. Hejhal, Zeros of Epstein zeta functions and supercomputers, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), Amer. Math. Soc., Providence, RI, 1987, pp. 1362–1384.
  • [He89] D. A. Hejhal, On polynomial approximations to $Z(t)$, Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori, 1989), Univ. Salerno, Salerno, 1992, pp. 201–210.
  • [He90] D. A. Hejhal, On the distribution of zeros of a certain class of Dirichlet series, Internat. Math. Res. Notices (1992), no. 4, 83–91.
  • [In32] A. E. Ingham, The Distribution of Prime Numbers, Cambridge Tracts in Math., vol. 30, Cambridge Univ. Press, Cambridge, 1932.
  • [JS81] H. Jacquet and J. A. Shalika, On Euler products and the classification of automorphic forms. II, Amer. J. Math. 103 (1981), no. 4, 777–815.
  • [Ka90] A. A. Karatsuba, Zeros of linear combinations of $Z$-functions that correspond to Dirichlet series, Dokl. Akad. Nauk SSSR 317 (1991), no. 5, 1053–1054.
  • [Ka91] A. A. Karatsuba, On zeros of a special form of functions connected with Dirichlet series, Izv. Akad. Nauk SSSR Ser. Mat. 55 (1991), no. 3, 483–514.
  • [Lu95] W. Luo, Zeros of Hecke $L$-functions associated with cusp forms, to appear in Acta Arith.
  • [Ma67] S. Mandelbrojt, Fonctions entières et transformées de Fourier. Applications, Publications of the Mathematical Society of Japan, No. 10, The Mathematical Society of Japan, Tokyo, 1967.
  • [Mo73] H. L. Montgomery, The pair correlation of zeros of the zeta function, Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972), Amer. Math. Soc., Providence, R.I., 1973, pp. 181–193.
  • [Mo74] H. L. Montgomery, Distribution of the zeros of the Riemann zeta function, Proceedings of the International Congress of Mathematicians (Vancouver, B. C., 1974), Vol. 1, Canad. Math. Congress, Montreal, Que., 1975, pp. 379–381.
  • [MoV74] H. L. Montgomery and R. C. Vaughan, Hilbert's inequality, J. London Math. Soc. (2) 8 (1974), 73–82.
  • [Mr77] C. J. Moreno, Explicit formulas in the theory of automorphic forms, Number Theory Day (Proc. Conf., Rockefeller Univ., New York, 1976), Springer, Berlin, 1977, 73–216. Lecture Notes in Math., Vol. 626.
  • [Mr85] C. J. Moreno, Analytic proof of the strong multiplicity one theorem, Amer. J. Math. 107 (1985), no. 1, 163–206.
  • [RS95] Z. Rudnick and P. Sarnak, Zeros of principal $L$-functions and random matrix theory, preprint, 1995.
  • [Se40]1 A. Selberg, Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist, Arch. Math. Naturvid. 43 (1940), 47–50.
  • [Se40]2 A. Selberg, Collected papers. Vol. I, Springer-Verlag, Berlin, 1989.
  • [Se42]1 A. Selberg, On the zeros of Riemann's zeta-function, Skr. Norske Vid. Akad. Oslo I 10 (1942), 1–59.
  • [Se42]2 A. Selberg, Collected papers. Vol. I, Springer-Verlag, Berlin, 1989, 85–141.
  • [Se44]1 A. Selberg, On the remainder in the formula for $N(T)$, the number of zeros of $\zeta(s)$ in the strip $0<t<T$, Avh. Norske Vid. Akad. Oslo. I. 1944 (1944), no. 1, 27.
  • [Se44]2 A. Selberg, Collected papers. Vol. I, Springer-Verlag, Berlin, 1989, 179–203.
  • [Se46]1 A. Selberg, Contributions to the theory of the Riemann zeta-function, Arch. Math. Naturvid. 48 (1946), no. 5, 89–155.
  • [Se46]2 A. Selberg, Collected papers. Vol. I, Springer-Verlag, Berlin, 1989, 214–280.
  • [Se46]3 A. Selberg, The zeta-function and the Riemann hypothesis, C. R. Dixième Congrès Math. Scandinaves 1946, Jul. Gjellerups Forlag, Copenhagen, 1947, pp. 187–200.
  • [Se89]1 A. Selberg, Old and new conjectures and results about a class of Dirichlet series, Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori, 1989), Univ. Salerno, Salerno, 1992, pp. 367–385.
  • [Se89]2 A. Selberg, Collected papers. Vol. I, Springer-Verlag, Berlin, 1989, 47–63.
  • [Ti51] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Oxford, at the Clarendon Press, 1951.
  • [Ts86] Kai-Man Tsang, Some $\Omega$-theorems for the Riemann zeta-function, Acta Arith. 46 (1986), no. 4, 369–395.
  • [Vo80] S. M. Voronin, Zeros of some Dirichlet series lying on the critical line, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), no. 1, 63–91, 238.