Duke Mathematical Journal

Composite differentiable functions

Edward Bierstone, Pierre D. Milman, and Wiesław Pawłucki

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 83, Number 3 (1996), 607-620.

Dates
First available: 19 February 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1077244647

Mathematical Reviews number (MathSciNet)
MR1390657

Zentralblatt MATH identifier
0868.32011

Digital Object Identifier
doi:10.1215/S0012-7094-96-08318-0

Subjects
Primary: 32B20: Semi-analytic sets and subanalytic sets [See also 14P15]
Secondary: 32K15: Differentiable functions on analytic spaces, differentiable spaces [See also 58C25] 58C25: Differentiable maps

Citation

Bierstone, Edward; Milman, Pierre D.; Pawłucki, Wiesław. Composite differentiable functions. Duke Mathematical Journal 83 (1996), no. 3, 607--620. doi:10.1215/S0012-7094-96-08318-0. http://projecteuclid.org/euclid.dmj/1077244647.


Export citation

References

  • [1] E. Bierstone and P. D. Milman, Composite differentiable functions, Ann. of Math. (2) 116 (1982), no. 3, 541–558.
  • [2] E. Bierstone and P. D. Milman, Algebras of composite differentiable functions, Singularities, Part 1 (Arcata, Calif., 1981), Proc. Sympos. Pure Math., vol. 40, Amer. Math. Soc., Providence, RI, 1983, pp. 127–136.
  • [3] E. Bierstone and P. D. Milman, The Newton diagram of an analytic morphism, and applications to differentiable functions, Bull. Amer. Math. Soc. 9 (1983), no. 3, 315–318.
  • [4]1 E. Bierstone and P. D. Milman, Relations among analytic functions, I, Ann. Inst. Fourier (Grenoble) 37 (1987), no. 1, 187–239.
  • [4]2 E. Bierstone and P. D. Milman, Relations among analytic functions, II, Ann. Inst. Fourier (Grenoble) 37 (1987), no. 2, 49–77.
  • [5] E. Bierstone and P. D. Milman, Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math. (1988), no. 67, 5–42.
  • [6] E. Bierstone and P. D. Milman, Geometric and differential properties of subanalytic sets, Bull. Amer. Math. Soc. 25 (1991), no. 2, 385–393.
  • [7] E. Bierstone and G. W. Schwarz, Continuous linear division and extension of $\cal C\sp\infty $ functions, Duke Math. J. 50 (1983), no. 1, 233–271.
  • [8] Z. Denkowska, S. Łojasiewicz, and J. Stasica, Certaines propriétés élémentaires des ensembles sous-analytiques, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), no. 7-8, 529–536 (1980).
  • [9] Z. Denkowska, S. Łojasiewicz, and J. Stasica, Sur le théorème du complémentaire pour les ensembles sous-analytiques, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), no. 7-8, 537–539 (1980).
  • [10] G. Glaeser, Fonctions composées différentiables, Ann. of Math. (2) 77 (1963), 193–209.
  • [11] H. Grauert, Über die Deformation isolierter Singularitäten analytischer Mengen, Invent. Math. 15 (1972), 171–198.
  • [12] R. H. Hardt, Stratification of real analytic mappings and images, Invent. Math. 28 (1975), 193–208.
  • [13] R. H. Hardt, Triangulation of subanalytic sets and proper light subanalytic maps, Invent. Math. 38 (1977), no. 3, 207–217.
  • [14] H. Hironaka, Subanalytic sets, Number theory, algebraic geometry and commutative algebra, in honor of Yasuo Akizuki, Kinokuniya, Tokyo, 1973, pp. 453–493.
  • [15] H. Hironaka, Introduction to the Theory of Infinitely Near Singular Points, Consejo Superior de Investigaciones Cientificas, Madrid, 1974.
  • [16] S. Łojasiewicz, Ensembles semi-analytiques, Inst. Hautes Études Sci., Bures-sur-Yvette, 1964.
  • [17] S. Łojasiewicz, Stratifications et triangulations sous-analytiques, Geometry Seminars, 1986 (Italian) (Bologna, 1986), Univ. Stud. Bologna, Bologna, 1988, pp. 83–97.
  • [18] B. Malgrange, Ideals of Differentiable Functions, Tata Institute of Fundamental Research Studies in Mathematics, No. 3, Oxford Univ. Press, Bombay, 1966.
  • [19] P. D. Milman, The Malgrange-Mather division theorem, Topology 16 (1977), no. 4, 395–401.
  • [20] W. Pawłucki, On relations among analytic functions and geometry of subanalytic sets, Bull. Polish Acad. Sci. Math. 37 (1989), no. 1-6, 117–125 (1990).
  • [21] W. Pawłucki, Points de Nash des ensembles sous-analytiques, Mem. Amer. Math. Soc. 425 (1990), vi+76.
  • [22] W. Pawłucki, On Gabrielov's regularity condition for analytic mappings, Duke Math. J. 65 (1992), no. 2, 299–311.
  • [23] G. W. Schwarz, Smooth functions invariant under the action of a compact Lie group, Topology 14 (1975), 63–68.
  • [24] J. Cl. Tougeron, An extension of Whitney's spectral theorem, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 139–148.
  • [25] J. Cl. Tougeron, Idéaux de fonctions différentiables, Springer-Verlag, Berlin, 1972.
  • [26] J. Cl. Tougeron, Fonctions composées différentiables: cas algébrique, Ann. Inst. Fourier (Grenoble) 30 (1980), no. 4, 51–74.
  • [27] H. Whitney, Functions differentiable on the boundaries of regions, Ann. of Math. 35 (1934), 482–485.
  • [28] H. Whitney, Differentiable even functions, Duke Math. J. 10 (1943), 159–160.