Duke Mathematical Journal

Extremal length estimates and product regions in Teichmüller space

Yair N. Minsky

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 83, Number 2 (1996), 249-286.

Dates
First available in Project Euclid: 19 February 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1077244446

Digital Object Identifier
doi:10.1215/S0012-7094-96-08310-6

Mathematical Reviews number (MathSciNet)
MR1390649

Zentralblatt MATH identifier
0861.32015

Subjects
Primary: 32G15: Moduli of Riemann surfaces, Teichmüller theory [See also 14H15, 30Fxx]

Citation

Minsky, Yair N. Extremal length estimates and product regions in Teichmüller space. Duke Math. J. 83 (1996), no. 2, 249--286. doi:10.1215/S0012-7094-96-08310-6. http://projecteuclid.org/euclid.dmj/1077244446.


Export citation

References

  • [1] W. Abikoff, The Real Analytic Theory of Teichmüller Space, Lecture Notes in Math., vol. 820, Springer-Verlag, New York, 1980.
  • [2] L. Ahlfors, Conformal Invariants: Topics in Geometric Function Theory, McGraw-Hill, New York, 1973.
  • [3] A. F. Beardon, The Geometry of Discrete Groups, Grad. Texts in Math., vol. 91, Springer-Verlag, New York, 1983.
  • [4] L. Bers, Spaces of degenerating Riemann surfaces, Discontinuous Groups and Riemann Surfaces (Proc. Conf., Univ. Maryland, College Park, Md., 1973), Ann. of Math. Stud., vol. 79, Princeton Univ. Press, Princeton, 1974, pp. 43–55.
  • [5] J. Cannon, The theory of negatively curved spaces and groups, Ergodic Theory, Symbolic Dynamics, and Hyperbolic Spaces (Trieste, 1989), Oxford Sci. Publ., Oxford Univ. Press, New York, 1991, pp. 315–369.
  • [6] M. Coornaert, T. Delzant, and A. Papadopoulos, Géométrie et théorie des groupes, Lecture Notes in Mathematics, vol. 1441, Springer-Verlag, Berlin, 1990.
  • [7] C. J. Earle and A. Marden, Geometric complex coordinates for Teichmüller space, manuscript.
  • [8] Fathi, A. and Laudenbach, F. and Poenaru, V., eds., Travaux de Thurston sur les surfaces, Astérisque, vol. 66, Société Mathématique de France, Paris, 1979.
  • [9] J. D. Fay, Theta Functions on Riemann Surfaces, Lecture Notes in Math., vol. 352, Springer-Verlag, New York, 1973.
  • [10] W. Fenchel and J. Nielsen, Discontinuous groups of non-Euclidean motions, unpublished manuscript.
  • [11] R. Fricke and F. Klein, Vorlesungen über die Theorie der automorphen Funktionen, Teubner, Leipzig, 1897/1912.
  • [12] M. Gromov, Hyperbolic groups, Essays in Group Theory ed. S. M. Gersten, Math. Sci. Res. Inst. Publ., vol. 8, Springer-Veralg, New York, 1987, pp. 75–263.
  • [13] D. Hejhal, Regular $b$-groups, degenerating Riemann surfaces, and spectral theory, Mem. Amer. Math. Soc. 88 (1990), no. 437, iv+138.
  • [14] L. Keen, Collars on Riemann surfaces, Discontinuous Groups and Riemann Surfaces (Proc. Conf., Univ. Maryland, College Park, Md., 1973), Ann. of Math. Stud., vol. 79, Princeton Univ. Press, Princeton, 1974, pp. 263–268.
  • [15] S. Kerckhoff, The asymptotic geometry of Teichmüller space, Topology 19 (1980), no. 1, 23–41.
  • [16] I. Kra, Horocyclic coordinates for Riemann surfaces and moduli spaces. I. Teichmüller and Riemann spaces of Kleinian groups, J. Amer. Math. Soc. 3 (1990), no. 3, 499–578.
  • [17] B. Maskit, Decomposition of certain Kleinian groups, Acta Math. 130 (1973), 243–263.
  • [18] B. Maskit, Moduli of marked Riemann surfaces, Bull. Amer. Math. Soc. 80 (1974), 773–777.
  • [19] B. Maskit, Comparison of hyperbolic and extremal lengths, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 381–386.
  • [20] H. A. Masur, On a class of geodesics in Teichmüller space, Ann. of Math. (2) 102 (1975), no. 2, 205–221.
  • [21] H. A. Masur, Extension of the Weil-Petersson metric to the boundary of Teichmüller space, Duke Math. J. 43 (1976), no. 3, 623–635.
  • [22] H. A. Masur, Transitivity properties of the horocyclic and geodesic flows on moduli space, J. Analyse Math. 39 (1981), 1–10.
  • [23] H. A. Masur, Two boundaries of Teichmüller space, Duke Math. J. 49 (1982), no. 1, 183–190.
  • [24] H. A. Masur and M. Wolf, Teichmüller space is not Gromov hyperbolic, Math. Sci. Res. Inst. preprint no. 011-94, 1994.
  • [25] Y. Minsky, Harmonic maps, length, and energy in Teichmüller space, J. Differential Geom. 35 (1992), no. 1, 151–217.
  • [26] Y. Minsky, Teichmüller geodesics and ends of hyperbolic $3$-manifolds, Topology 32 (1993), no. 3, 625–647.
  • [27] M. Wolf and S. A. Wolpert, Real analytic structures on the moduli space of curves, Amer. J. Math. 114 (1992), no. 5, 1079–1102.
  • [28] S. A. Wolpert, On the Weil-Petersson geometry of the moduli space of curves, Amer. J. Math. 107 (1985), no. 4, 969–997.
  • [29] S. A. Wolpert, Cut-and-paste deformations of Riemann surfaces, Ann. Acad. Sci. Fenn. Ser. A I Math. 13 (1988), no. 3, 401–413.
  • [30] S. A. Wolpert, The hyperbolic metric and the geometry of the universal curve, J. Differential Geom. 31 (1990), no. 2, 417–472.