Duke Mathematical Journal

Cusp forms of weight $1$ associated to Fermat curves

Tonghai Yang

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Duke Math. J. Volume 83, Number 1 (1996), 141-156.

First available in Project Euclid: 19 February 2004

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 11F11: Holomorphic modular forms of integral weight
Secondary: 11G18: Arithmetic aspects of modular and Shimura varieties [See also 14G35]


Yang, Tonghai. Cusp forms of weight 1 associated to Fermat curves. Duke Math. J. 83 (1996), no. 1, 141--156. doi:10.1215/S0012-7094-96-08306-4. http://projecteuclid.org/euclid.dmj/1077244250.

Export citation


  • [DS] P. Deligne and J. P. Serre, Formes modulaires de poids $1$, Ann. Sci. École Norm. Sup. (4) 7 (1974), 507–530 (1975).
  • [Du] W. Duke, The dimension of the space of cusp forms of weight one, Internat. Math. Res. Notices (1995), no. 2, 99–109 (electronic).
  • [FK] H. M. Farkas and I. Kra, Riemann Surfaces, Graduate Texts in Math., vol. 71, Springer-Verlag, New York, 1980.
  • [GR] B. Gross and D. Rohrlich, Some results on the Mordell-Weil group of the Jacobian of the Fermat curve, Invent. Math. 44 (1978), no. 3, 201–224.
  • [La] R. P. Langlands, Base change for $\rm GL(2)$, Annals of Mathematics Studies, vol. 96, Princeton University Press, Princeton, N.J., 1980.
  • [Mi] T. Miyake, Modular Forms, Springer-Verlag, Berlin, 1989.
  • [Mu] D. Mumford, Tata lectures on theta. I, Progress in Mathematics, vol. 28, Birkhäuser Boston Inc., Boston, MA, 1983.
  • [PS] R. Phillips and P. Sarnak, The spectrum of Fermat curves, Geom. Funct. Anal. 1 (1991), no. 1, 80–146.
  • [Ra] H. Rademacher, Topics in Analytic Number Theory, Grundlehren Math. Wiss., vol. 169, Springer-Verlag, New York, 1973.
  • [Roh1] D. Rohrlich, Modular forms, 1993, lectures at University of Maryland at College Park.
  • [Roh2] D. Rohrlich, Modular functions and the Feramt curves, Ph.D. thesis, Yale University, 1976.
  • [Roh3] D. Rohrlich, Points at infinity on the Fermat curves, Invent. Math. 39 (1977), no. 2, 95–127.
  • [Se] J. P. Serre, Modular forms of weight one and galois representations, Algebraic Number Fields (Proc. Sympos., Univ. Durham, Durham, 1975) ed. A. Frohlich, Academic Press, London, 1977, pp. 193–268.
  • [Tu] J. Tunnell, Artin's conjecture for representations of octahedral type, Bull. Amer. Math. Soc. 5 (1981), no. 2, 173–175.
  • [Ya] Tonghai Yang, Two-dimensional Artin representations of conductor dividing $256$, preprint, 1995.