Duke Mathematical Journal

Stacks of stable maps and Gromov-Witten invariants

K. Behrend and Yu. Manin

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 85, Number 1 (1996), 1-60.

Dates
First available in Project Euclid: 19 February 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1077243035

Mathematical Reviews number (MathSciNet)
MR1412436

Zentralblatt MATH identifier
0872.14019

Digital Object Identifier
doi:10.1215/S0012-7094-96-08501-4

Subjects
Primary: 14D20: Algebraic moduli problems, moduli of vector bundles {For analytic moduli problems, see 32G13}
Secondary: 14C25: Algebraic cycles 14D22: Fine and coarse moduli spaces

Citation

Behrend, K.; Manin, Yu. Stacks of stable maps and Gromov-Witten invariants. Duke Mathematical Journal 85 (1996), no. 1, 1--60. doi:10.1215/S0012-7094-96-08501-4. http://projecteuclid.org/euclid.dmj/1077243035.


Export citation

References

  • [1]1 M. Artin, A. Grothendieck, and J. L. Verdier, Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos, Lecture Notes in Mathematics, vol. 269, Springer-Verlag, Berlin, 1972.
  • [1]2 M. Artin, A. Grothendieck, and J. L. Verdier, Théorie des topos et cohomologie étale des schémas. Tome 2, Lecture Notes in Mathematics, vol. 270, Springer-Verlag, Berlin, 1972.
  • [1]3 M. Artin, A. Grothendieck, and J. L. Verdier, Théorie des topos et cohomologie étale des schémas. Tome 3, Lecture Notes in Mathematics, vol. 305, Springer-Verlag, Berlin, 1973.
  • [2] K. Behrend, Gromov-Witten invariants in algebraic geometry, to appear in Invent. Math.
  • [3] K. Behrend and B. Fantechi, The intrinsic normal cone, to appear in Invent. Math.
  • [4] P. Deligne and J. Milne, Tannakian categories, Hodge Cycles, Motives, and Shimura Varieties, Lecture Notes in Math., vol. 900, Springer-Verlag, New York, 1982, pp. 101–228.
  • [5] W. Fulton and R. MacPherson, Categorical framework for the study of singular spaces, Mem. Amer. Math. Soc. 31 (1981), no. 243, vi+165.
  • [6] W. Fulton and R. Pandharipande, Notes on stable maps and quantum cohomology, to appear in the proceedings of the Algebraic Geometry Conference in Santa Cruz, Calif., 1995.
  • [7] E. Getzler and M. Kapranov, Cyclic operads and cyclic homology, Geometry, topology, & physics ed. S. T. Yau, Conf. Proc. Lecture Notes Geom. Topology, IV, Internat. Press, Cambridge, MA, 1995, pp. 167–201.
  • [8] A. Grothendieck, Techniques de construction et théorèmes d'existence en géométrie algébrique IV: Les schémas de Hilbert, Séminaire Bourbaki, 13e année, 221, 1960–61.
  • [9] A. Grothendieck, Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes, Inst. Hautes Études Sci. Publ. Math. (1961), no. 8, 222.
  • [10]1 A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I, Inst. Hautes Études Sci. Publ. Math. (1964), no. 20, 259.
  • [10]2 A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Inst. Hautes Études Sci. Publ. Math. (1965), no. 24, 231.
  • [10]3 A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Inst. Hautes Études Sci. Publ. Math. (1966), no. 28, 255.
  • [10]4 A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math. (1967), no. 32, 361.
  • [11] A. Grothendieck and M. Raynaud, Revêtements étales et groupe fondamental, Lecture Notes in Mathematics, vol. 224, Springer-Verlag, Berlin, 1971.
  • [12] S. Kleiman, Motives, Algebraic geometry, Oslo 1970 (Proc. Fifth Nordic Summer-School in Math., Oslo, 1970), Wolters-Noordhoff, Groningen, 1972, pp. 53–82.
  • [13] F. Knudsen, The projectivity of the moduli space of stable curves. II. The stacks $M\sbg,n$, Math. Scand. 52 (1983), no. 2, 161–199.
  • [14] M. Kontsevich, Enumeration of rational curves via torus actions, The moduli space of curves (Texel Island, 1994), Progr. Math., vol. 129, Birkhäuser Boston, Boston, MA, 1995, pp. 335–368.
  • [15] M. Kontsevich and Yu. Manin, Gromov-Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys. 164 (1994), no. 3, 525–562.
  • [16] M. Kontsevich and Yu. Manin, Quantum cohomology of a product, Invent. Math. 124 (1996), no. 1-3, 313–339, (appendix by R. Kaufmann).
  • [17] A. J. Scholl, Classical motives, Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 163–187.
  • [18] A. Vistoli, Intersection theory on algebraic stacks and on their moduli spaces, Invent. Math. 97 (1989), no. 3, 613–670.