Duke Mathematical Journal

The variational bicomplex for hyperbolic second-order scalar partial differential equations in the plane

Ian M. Anderson and Niky Kamran

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 87, Number 2 (1997), 265-319.

Dates
First available in Project Euclid: 19 February 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1077242147

Digital Object Identifier
doi:10.1215/S0012-7094-97-08711-1

Mathematical Reviews number (MathSciNet)
MR1443529

Zentralblatt MATH identifier
0881.35069

Subjects
Primary: 58H99: None of the above, but in this section
Secondary: 35L70: Nonlinear second-order hyperbolic equations 58A20: Jets

Citation

Anderson, Ian M.; Kamran, Niky. The variational bicomplex for hyperbolic second-order scalar partial differential equations in the plane. Duke Math. J. 87 (1997), no. 2, 265--319. doi:10.1215/S0012-7094-97-08711-1. http://projecteuclid.org/euclid.dmj/1077242147.


Export citation

References

  • [1] I. M. Anderson, The Variational Bicomplex, forthcoming.
  • [2] I. M. Anderson and T. Duchamp, On the existence of global variational principles, Amer. J. Math. 102 (1980), no. 5, 781–868.
  • [3] I. M. Anderson and M. Fels, Variational operators for ordinary differential equations, Hamiltonian operators, and the method of equivalence, in preparation.
  • [4] I. M. Anderson and M. Juráš, Generalized Laplace invariants and the method of Darboux, to appear in Duke Math. J.
  • [5] I. M. Anderson and N. Kamran, The variational bicomplex for second-order scalar partial differential equations in the plane, Department of Mathematics, Utah State University, Septembre 1994.
  • [6] I. M. Anderson and N. Kamran, La cohomologie du complexe bi-gradué variationnel pour les équations paraboliques du deuxième ordre dans le plan, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), no. 9, 1213–1217.
  • [7] I. M. Anderson and G. Thompson, The inverse problem of the calculus of variations for ordinary differential equations, Mem. Amer. Math. Soc. 98 (1992), no. 473, vi+110.
  • [8] I. M. Anderson and C. G. Torre, Symmetries of the Einstein equations, Phys. Rev. Lett. 70 (1993), no. 23, 3525–3529.
  • [9] I. M. Anderson and C. G. Torre, Aysmptotic conservation laws in field theory, Phys. Rev. Lett. 77 (1996), 4109–4133.
  • [10] I. M. Anderson and C. G. Torre, Lower degree conservation laws in field theory, in preparation.
  • [11]1 G. Barnich, F. Brandt, and M. Henneaux, Local BRST cohomology in the antifield formalism. I. General theorems, Comm. Math. Phys. 174 (1995), no. 1, 57–91.
  • [11]2 G. Barnich, F. Brandt, and M. Henneaux, Local BRST cohomology in the antifield formalism. II. Application to Yang-Mills theory, Comm. Math. Phys. 174 (1995), no. 1, 93–116.
  • [12] R. L. Bryant, S. S. Chern, R. B. Gardner, H. L. Goldschmidt, and P. A. Griffiths, Exterior differential systems, Mathematical Sciences Research Institute Publications, vol. 18, Springer-Verlag, New York, 1991.
  • [13] R. L. Bryant and P. A. Griffiths, Characteristic cohomology of differential systems. I. General theory, J. Amer. Math. Soc. 8 (1995), no. 3, 507–596.
  • [14] R. L. Bryant and P. A. Griffiths, Characteristic cohomology of differential systems. II. Conservation laws for a class of parabolic equations, Duke Math. J. 78 (1995), no. 3, 531–676.
  • [15]1 R. Bryant, P. A. Griffiths, and L. Hsu, Hyperbolic exterior differential systems and their conservation laws. I, Selecta Math. (N.S.) 1 (1995), no. 1, 21–112.
  • [15]2 R. Bryant, P. A. Griffiths, and L. Hsu, Hyperbolic exterior differential systems and their conservation laws. II, Selecta Math. (N.S.) 1 (1995), no. 2, 265–323.
  • [16] G. Darboux, Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal, Gauthier-Villars, Paris, 1896.
  • [17] R. P. Delong, Killing Tensors and the Hamilton-Jacobi Equation, PH.D. dissertation, University of Minnesota, 1982.
  • [18] S. V. Duzhin and T. Tsujishita, Conservation laws of the BBM equation, J. Phys. A 17 (1984), no. 16, 3267–3276.
  • [19] A. Forsyth, Theory of Differential Equations, Vol. 6, Dover, New York, 1959.
  • [20] R. B. Gardner, A differential geometric generalization of characteristics, Comm. Pure Appl. Math. 22 (1969), 597–626.
  • [21] R. B. Gardner and N. Kamran, Characteristics and the geometry of hyperbolic equations in the plane, J. Differential Equations 104 (1993), no. 1, 60–116.
  • [22] E. Goursat, Leçon sur l'intégration des équations aux dériées partielles du second ordre à deux variables indépendantes, Tome 1, Hermann, Paris, 1896.
  • [23] E. Goursat, Leçon sur l'intégration des équations aux dériées partielles du second ordre à deux variables indépendantes, Tome 2, Hermann, Paris, 1896.
  • [24] M. Juráš, Generalized Laplace invariants and classical integration methods for second order scalar hyperbolic partial differential equations in the plane, Differential geometry and applications (Brno, 1995), Masaryk Univ., Brno, 1996, pp. 275–284.
  • [25] M. Juráš Ph.D. thesis, Utah State University, Logan, Utah, in preparation.
  • [26] N. G. Khorkova, On the $\scr C$-spectral sequence of differential equations, Differential Geom. Appl. 3 (1993), no. 3, 219–243.
  • [27] I. S. Krasilśhchik, V. V. Lychagin, and A. M. Vinogradov, Geometry of jet spaces and nonlinear partial differential equations, Advanced Studies in Contemporary Mathematics, vol. 1, Gordon and Breach Science Publishers, New York, 1986.
  • [28] A. V. Mikhailov, A. B. Shabat, and V. V. Sokolov, The symmetry approach to classification of integrable equations, What is integrability?, Springer Ser. Nonlinear Dynam., Springer, Berlin, 1991, pp. 115–184.
  • [29] P. J. Olver, Euler operators and conservation laws of the BBM equation, Math. Proc. Cambridge Philos. Soc. 85 (1979), no. 1, 143–160.
  • [30] P. J. Olver, Conservation laws in elasticity. II. Linear homogeneous isotropic elastostatics, Arch. Rational Mech. Anal. 85 (1984), no. 2, 131–160.
  • [31] P. J. Olver, Conservation laws in elasticity. I. General results, Arch. Rational Mech. Anal. 85 (1984), no. 2, 111–129.
  • [32] P. J. Olver, Applications of Lie groups to differential equations, Graduate Texts in Mathematics, vol. 107, Springer-Verlag, New York, 1986.
  • [33] P. J. Olver, Darboux's theorem for Hamiltonian differential operators, J. Differential Equations 71 (1988), no. 1, 10–33.
  • [34] A. V. Shapovalov and I. V. Shirokov, On the symmetry algebra of a linear differential equation, Theoret. and Math. Phys. 92 (1992), 697–703.
  • [35] V. V. Sokolov and A. V. Zhiber, On the Darboux integrable hyperbolic equations, Phys. Lett. A 208 (1995), no. 4-6, 303–308.
  • [36] T. Tsujishita, On variation bicomplexes associated to differential equations, Osaka J. Math. 19 (1982), no. 2, 311–363.
  • [37] T. Tsujishita, Formal geometry of systems of differential equations, Sugaku Exposition 2 (1989), 1–40.
  • [38] T. Tsujishita, Homological method of computing invariants of systems of differential equations, Differential Geom. Appl. 1 (1991), no. 1, 3–34.
  • [39] W. M. Tulczyjew, The Euler-Lagrange resolution, Differential geometrical methods in mathematical physics (Proc. Conf., Aix-en-Provence/Salamanca, 1979), Lecture Notes in Math., vol. 836, Springer, Berlin, 1980, pp. 22–48.
  • [40] E. Vessiot, Sur les équations aux dérivées partielles du second ordre, $F(x,y,z,p,q,r,s,t)=0$, intégrables par la méthode de Darboux, J. Math. Pures Appl. (9) 18 (1939), 1–61.
  • [41] E. Vessiot, Sur les équations aux dérivées partielles du second ordre, $F(x,y,z,p,q,r,s,t)=0$, intégrables par la méthode de Darboux, J. Math. Pures Appl. (9) 21 (1942), 1–66.
  • [42]1 A. M. Vinogradov, The $\cal C$-spectral sequence, Lagrangian formalism, and conservation laws. I. The linear theory, J. Math. Anal. Appl. 100 (1984), no. 1, 1–40.
  • [42]2 A. M. Vinogradov, The $\cal C$-spectral sequence, Lagrangian formalism, and conservation laws. II. The nonlinear theory, J. Math. Anal. Appl. 100 (1984), no. 1, 41–129.
  • [43] V. V. Zharinov, Differential algebras and low-dimension conservation laws, Math. USSR Sb. 71 (1992), 319–329.
  • [44] A. V. Zhiber and A. B. Shabat, Klein-Gordon equation with nontrivial group, Soviet Math. Dokl. 24 (1979), 607–609.