Duke Mathematical Journal

Chow groups of projective varieties of very small degree

Hélène Esnault, Marc Levine, and Eckart Viehweg

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 87, Number 1 (1997), 29-58.

Dates
First available in Project Euclid: 19 February 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1077241949

Mathematical Reviews number (MathSciNet)
MR1440062

Zentralblatt MATH identifier
0916.14001

Digital Object Identifier
doi:10.1215/S0012-7094-97-08702-0

Subjects
Primary: 14C15: (Equivariant) Chow groups and rings; motives

Citation

Esnault, Hélène; Levine, Marc; Viehweg, Eckart. Chow groups of projective varieties of very small degree. Duke Mathematical Journal 87 (1997), no. 1, 29--58. doi:10.1215/S0012-7094-97-08702-0. http://projecteuclid.org/euclid.dmj/1077241949.


Export citation

References

  • [1] S. Bloch, Lectures on algebraic cycles, Duke University Mathematics Series, IV, Duke University Mathematics Department, Durham, N.C., 1980.
  • [2] S. Bloch and V. Srinivas, Remarks on correspondences and algebraic cycles, Amer. J. Math. 105 (1983), no. 5, 1235–1253.
  • [3] F. Campana, Connexité rationnelle des variétés de Fano, Ann. Sci. École Norm. Sup. (4) 25 (1992), no. 5, 539–545.
  • [4] M. Demazure, A very simple proof of Bott's theorem, Invent. Math. 33 (1976), no. 3, 271–272.
  • [5] H. Esnault, M. Nori, and V. Srinivas, Hodge type of projective varieties of low degree, Math. Ann. 293 (1992), no. 1, 1–6.
  • [6] W. Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984.
  • [7] W. Fulton and R. Lazarsfeld, On the connectedness of degeneracy loci and special divisors, Acta Math. 146 (1981), no. 3-4, 271–283.
  • [8] A. Grothendieck, Hodge's general conjecture is false for trivial reasons, Topology 8 (1969), 299–303.
  • [9] J. Harris, Algebraic geometry, Graduate Texts in Mathematics, vol. 133, Springer-Verlag, New York, 1992.
  • [10] U. Jannsen, Motivic sheaves and filtrations on Chow groups, Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 245–302.
  • [11] A. J. de Jong, Smoothness, semi-stability and alterations, manuscript.
  • [12] N. Katz, On a theorem of Ax, Amer. J. Math. 93 (1971), 485–499.
  • [13] S. L. Kleiman, Motives, Algebraic geometry, Oslo 1970 (Proc. Fifth Nordic Summer-School in Math., Oslo, 1970), Wolters-Noordhoff, Groningen, 1972, pp. 53–82.
  • [14] J. Kollár, Y. Miyaoka, and S. Mori, Rational connectedness and boundedness of Fano manifolds, J. Differential Geom. 36 (1992), no. 3, 765–779.
  • [15] D. Mumford, Rational equivalence of $0$-cycles on surfaces, J. Math. Kyoto Univ. 9 (1968), 195–204.
  • [16] K. H. Paranjape, Cohomological and cycle-theoretic connectivity, Ann. of Math. (2) 139 (1994), no. 3, 641–660.
  • [17] A. A. Roitman, Rational equivalence of zero-dimensional cycles, Mat. Sb. (N.S.) 89(131) (1972), 569–585, 671, translation in Math. USSR Sb. 18(1972), 571–588.
  • [18] A. A. Roitman, Rational equivalence of zero-dimensional cycles, Mat. Zametki 28 (1980), no. 1, 85–90, 169, translation in Math. Notes(1981), 507–510.