Duke Mathematical Journal

On CR mappings between pseudoconvex hypersurfaces of finite type in $\mathbb{C}^2$

Bernard Coupet and Alexandre Sukhov

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 88, Number 2 (1997), 281-304.

Dates
First available: 19 February 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1077241579

Mathematical Reviews number (MathSciNet)
MR1455521

Zentralblatt MATH identifier
0895.32007

Digital Object Identifier
doi:10.1215/S0012-7094-97-08811-6

Subjects
Primary: 32H40: Boundary regularity of mappings
Secondary: 32F15

Citation

Coupet, Bernard; Sukhov, Alexandre. On CR mappings between pseudoconvex hypersurfaces of finite type in ℂ 2 . Duke Mathematical Journal 88 (1997), no. 2, 281--304. doi:10.1215/S0012-7094-97-08811-6. http://projecteuclid.org/euclid.dmj/1077241579.


Export citation

References

  • [1] M. S. Baouendi, S. Bell, and L. P. Rothschild, Mappings of three-dimensional CR manifolds and their holomorphic extension, Duke Math. J. 56 (1988), no. 3, 503–530.
  • [2] M. S. Baouendi and L. P. Rothschild, Germs of CR maps between real analytic hypersurfaces, Invent. Math. 93 (1988), no. 3, 481–500.
  • [3] E. Bedford, Proper holomorphic mappings, Bull. Amer. Math. Soc. (N.S.) 10 (1984), no. 2, 157–175.
  • [4] E. Bedford and J. E. Fornæss, Biholomorphic maps of weakly pseudoconvex domains, Duke Math. J. 45 (1978), no. 4, 711–719.
  • [5] E. Bedford and J. E. Fornæss, Local extension of CR functions from weakly pseudoconvex boundaries, Michigan Math. J. 25 (1978), no. 3, 259–262.
  • [6] E. Bedford and S. Pinchuk, Domains in $\bf C\sp n+1$ with noncompact automorphism group, J. Geom. Anal. 1 (1991), no. 3, 165–191.
  • [7] S. Bell, CR maps between hypersurfaces in $\bf C\sp n$, Several complex variables and complex geometry, Part 1 (Santa Cruz, CA, 1989), Proc. Sympos. Pure Math., vol. 52, Amer. Math. Soc., Providence, RI, 1991, pp. 13–22.
  • [8] S. Bell, Local regularity of CR homeomorphisms, Duke Math. J. 57 (1988), no. 1, 295–300.
  • [9] S. Bell and D. Catlin, Regularity of CR mappings, Math. Z. 199 (1988), no. 3, 357–368.
  • [10] S. Bell and E. Ligocka, A simplification and extension of Fefferman's theorem on biholomorphic mappings, Invent. Math. 57 (1980), no. 3, 283–289.
  • [11] F. Berteloot, Attraction des disques analytiques et continuité höldérienne d'applications holomorphes propres, Topics in complex analysis (Warsaw, 1992), Banach Center Publ., vol. 31, Polish Acad. Sci., Warsaw, 1995, pp. 91–98.
  • [12] F. Berteloot and G. Cœuré, Domaines de $\bf C\sp 2$, pseudoconvexes et de type fini ayant un groupe non compact dáutomorphismes, Ann. Inst. Fourier (Grenoble) 41 (1991), no. 1, 77–86.
  • [13] D. Catlin, Estimates of invariant metrics on pseudoconvex domains of dimension two, Math. Z. 200 (1989), no. 3, 429–466.
  • [14] S. S. Chern and J. K. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219–271.
  • [15] E. M. Chirka, Analytic representation of CR-functions, Math. USSR-Sb. 27 (1975), 526–553.
  • [16] B. Coupet, Uniform extendibility of automorphisms, The Madison Symposium on Complex Analysis (Madison, WI, 1991), Contemp. Math., vol. 137, Amer. Math. Soc., Providence, RI, 1992, pp. 177–183.
  • [17] B. Coupet, Precise regularity up to the boundary of proper holomorphic mappings, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 20 (1993), no. 3, 461–482.
  • [18] B. Coupet, S. Pinchuk, and A. Sukhov, On boundary rigidity and regularity of holomorphic mappings, Internat. J. Math. 7 (1996), no. 5, 617–643.
  • [19] K. Diederich and J. E. Fornæss, Proper holomorphic maps onto pseudoconvex domains with real-analytic boundary, Ann. of Math. (2) 110 (1979), no. 3, 575–592.
  • [20] K. Diederich and J. E. Fornæss, Applications holomorphes propres entre domaines à bord analytique réel, C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), no. 7, 321–324.
  • [21] K. Diederich and J. E. Fornæss, Proper holomorphic mappings between real-analytic pseudoconvex domains in $\bf C\sp n$, Math. Ann. 282 (1988), no. 4, 681–700.
  • [22] K. Diederich, J. E. Fornæss, and Z. Ye, Biholomorphisms in dimension $2$, J. Geom. Anal. 4 (1994), no. 4, 539–552.
  • [23] K. Diederich and T. Ohsawa, General continuity principles for the Bergman kernel, Internat. J. Math. 5 (1994), no. 2, 189–199.
  • [24] K. Diederich and S. Pinchuk, Proper holomorphic maps in dimension $2$ extend, Indiana Univ. Math. J. 44 (1995), no. 4, 1089–1126.
  • [25] K. Diederich and S. M. Webster, A reflection principle for degenerate real hypersurfaces, Duke Math. J. 47 (1980), no. 4, 835–843.
  • [26] C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26 (1974), 1–65.
  • [27] J. E. Fornæss and E. Løw, Proper holomorphic mappings, Math. Scand. 58 (1986), no. 2, 311–322.
  • [28] J. E. Fornæss and N. Sibony, Construction of P.S.H. functions on weakly pseudoconvex domains, Duke Math. J. 58 (1989), no. 3, 633–655.
  • [29] J. E. Fornæss and B. Stensønes, Lectures on counterexamples in several complex variables, Mathematical Notes, vol. 33, Princeton University Press, Princeton, NJ, 1987.
  • [30] F. Forstnerič, Proper holomorphic mappings: a survey, Several complex variables (Stockholm, 1987/1988), Math. Notes, vol. 38, Princeton Univ. Press, Princeton, NJ, 1993, pp. 297–363.
  • [31] S. Frankel, Complex geometry of convex domains that cover varieties, Acta Math. 163 (1989), no. 1-2, 109–149.
  • [32] R. Greene and S. Krantz, Stability of the Carathéodory and Kobayashi metrics and applications to biholomorphic mappings, Complex analysis of several variables (Madison, Wis., 1982), Proc. Sympos. Pure Math., vol. 41, Amer. Math. Soc., Providence, RI, 1984, pp. 77–93.
  • [33] M. Kalka, A deformation theorem for the Kobayashi metric, Proc. Amer. Math. Soc. 59 (1976), no. 2, 245–251.
  • [34] L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), no. 4, 427–474.
  • [35] H. Lewy, On the boundary behavior of holomorphic mappings, Acad. Naz. Lincei 35 (1977), 1–8.
  • [36] D. Mumford, Algebraic Geometry. I: Complex Projective Varieties, Grundlehren der Mathematischen Wissenschaften, vol. 221, Springer-Verlag, Berlin, 1976.
  • [37] L. Nirenberg, S. Webster, and P. Yang, Local boundary regularity of holomorphic mappings, Comm. Pure Appl. Math. 33 (1980), no. 3, 305–338.
  • [38] S. Pinchuk, Holomorphic inequivalence of some classes of domains in $\mathbbC^n$, Math. USSR Sb. 39 (1981), 61–86.
  • [39] S. Pinchuk, Holomorphic mappings in $\mathbbC^n$ and the problem of holomorphic equivalence, Several Complex Variables III, Encyclopaedia Math. Sci., vol. 9, Springer-Verlag, Berlin, 1989, pp. 173–199.
  • [40] S. Pinchuk, The scaling method and holomorphic mappings, Several complex variables and complex geometry, Part 1 (Santa Cruz, CA, 1989), Proc. Sympos. Pure Math., vol. 52, Amer. Math. Soc., Providence, RI, 1991, pp. 151–161.
  • [41] S. Pinchuk, On the analytic continuation of holomorphic mappings, Math. USSR-Sb. 27 (1975), 375–392.
  • [42] S. Pinchuk and S. Khasanov, Asymptotically holomorphic functions and their applications, Math. USSR-Sb. 62 (1989), 541–550.
  • [43] S. Pinchuk and Sh. Tsyganov, Smoothness of CR-mappings between strictly pseudoconvex hypersurfaces, Math. USSR-Izv. 35 (1990), 457–467.
  • [44] N. Sibony, A class of hyperbolic manifolds, Recent developments in several complex variables (Proc. Conf., Princeton Univ., Princeton, N. J., 1979), Ann. of Math. Stud., vol. 100, Princeton Univ. Press, Princeton, N.J., 1981, pp. 357–372.
  • [45] A. Sukhov, On the continuous continuation and rigidity of holomorphic mappings between domains with piecewise-smooth boundaries, Mat. Sb. 185 (1994), no. 8, 115–128, English transl. in Russian Acad. Sci. Sb. Math. 82 (1995), 471–483.
  • [46] A. Sukhov, On the boundary regularity of holomorphic mappings, Mat. Sb. 185 (1994), no. 12, 131–142, English transl. in Russian Acad. Sci. Sb. Math., 83, (1995), 541–551.
  • [47] J. M. Trépreau, Sur le prolongement holomorphe des fonctions C-R défines sur une hypersurface réelle de classe $C\sp 2$ dans $\bf C\sp n$, Invent. Math. 83 (1986), no. 3, 583–592.
  • [48] A. E. Tumanov, Extension of CR-functions into a wedge from a manifold of finite type, Math. USSR-Sb. 136 (1988), 128–139.
  • [49] S. Webster, On the mapping problem for algebraic real hypersurfaces, Invent. Math. 43 (1977), no. 1, 53–68.
  • [50] S. Webster, Holomorphic mappings of domains with generic corners, Proc. Amer. Math. Soc. 86 (1982), no. 2, 236–240.
  • [51] J. Yu, Weighted boundary limits of the generalized Kobayashi-Royden metrics on weakly pseudoconvex domains, Trans. Amer. Math. Soc. 347 (1995), no. 2, 587–614.