Duke Mathematical Journal

Uniform boundedness for rational points

Patricia L. Pacelli

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 88, Number 1 (1997), 77-102.

Dates
First available: 19 February 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1077241399

Mathematical Reviews number (MathSciNet)
MR1448017

Zentralblatt MATH identifier
0935.14016

Digital Object Identifier
doi:10.1215/S0012-7094-97-08803-7

Subjects
Primary: 14G05: Rational points
Secondary: 11G35: Varieties over global fields [See also 14G25]

Citation

Pacelli, Patricia L. Uniform boundedness for rational points. Duke Mathematical Journal 88 (1997), no. 1, 77--102. doi:10.1215/S0012-7094-97-08803-7. http://projecteuclid.org/euclid.dmj/1077241399.


Export citation

References

  • [A] D. Abramovich, Uniformité des points rationnels des courbes algébriques sur les extensions quadratiques et cubiques, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), no. 6, 755–758.
  • [AV] D. Abramovich and J. F. Voloch, Lang's conjectures, fibered powers, and uniformity, New York J. Math. 2 (1996), 20–34, electronic.
  • [CHM] L. Caporaso, J. Harris, and B. Mazur, Uniformity of rational points, to appear in J. Amer. Math. Soc.
  • [V] E. Viehweg, Die Additivität der Kodaira Dimension für projektive Faserräume über Varietäten des allgemeinen Typs, J. Reine Angew. Math. 330 (1982), 132–142.