Duke Mathematical Journal

Quiver varieties and Kac-Moody algebras

Hiraku Nakajima

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 91, Number 3 (1998), 515-560.

Dates
First available in Project Euclid: 19 February 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1077232257

Digital Object Identifier
doi:10.1215/S0012-7094-98-09120-7

Mathematical Reviews number (MathSciNet)
MR1604167

Zentralblatt MATH identifier
0970.17017

Subjects
Primary: 17B67: Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras
Secondary: 14D25 16G20: Representations of quivers and partially ordered sets 17B35: Universal enveloping (super)algebras [See also 16S30] 53C25: Special Riemannian manifolds (Einstein, Sasakian, etc.) 58F05

Citation

Nakajima, Hiraku. Quiver varieties and Kac-Moody algebras. Duke Math. J. 91 (1998), no. 3, 515--560. doi:10.1215/S0012-7094-98-09120-7. http://projecteuclid.org/euclid.dmj/1077232257.


Export citation

References

  • [1] A. Beĭ linson, G. Lusztig, and R. MacPherson, A geometric setting for the quantum deformation of $\rm GL\sb n$, Duke Math. J. 61 (1990), no. 2, 655–677.
  • [2] D. Birkes, Orbits of linear algebraic groups, Ann. of Math. (2) 93 (1971), 459–475.
  • [3] W. Borho and R. MacPherson, Partial resolutions of nilpotent varieties, Analysis and topology on singular spaces, II, III (Luminy, 1981), Astérisque, vol. 101, Soc. Math. France, Paris, 1983, pp. 23–74.
  • [4] N. Chriss and V. Ginzburg, Representation theory and complex geometry, Birkhäuser Boston Inc., Boston, MA, 1997.
  • [5] W. Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984.
  • [6] W. Fulton and R. MacPherson, Intersecting cycles on an algebraic variety, Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976) ed. P. Holm, Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, pp. 179–197.
  • [7] V. Ginzburg, Lagrangian construction of the enveloping algebra $U(\rm sl\sb n)$, C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), no. 12, 907–912.
  • [8] V. Ginzburg, M. Kapranov, and E. Vasserot, Langlands reciprocity for algebraic surfaces, Math. Res. Lett. 2 (1995), no. 2, 147–160.
  • [9] V. Ginzburg and E. Vasserot, Langlands reciprocity for affine quantum groups of type $A\sb n$, Internat. Math. Res. Notices (1993), no. 3, 67–85.
  • [10] I. Grojnowski, Instantons and affine algebras. I. The Hilbert scheme and vertex operators, Math. Res. Lett. 3 (1996), no. 2, 275–291.
  • [11] V. G. Kac, Infinite-Dimensional Lie Algebras, 3d ed. ed., Cambridge University Press, Cambridge, 1990.
  • [12] M. Kashiwara, On crystal bases of the $Q$-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), no. 2, 465–516.
  • [13] M. Kashiwara, Global crystal bases of quantum groups, Duke Math. J. 69 (1993), no. 2, 455–485.
  • [14] M. Kashiwara and Y. Saito, Geometric construction of crystal bases, Duke Math. J. 89 (1997), no. 1, 9–36.
  • [15] G. Kempf, Instability in invariant theory, Ann. of Math. (2) 108 (1978), no. 2, 299–316.
  • [16] A. King, Moduli of representations of finite-dimensional algebras, Quart. J. Math. Oxford Ser. (2) 45 (1994), no. 180, 515–530.
  • [17] P. B. Kronheimer, The construction of ALE spaces as hyper-Kähler quotients, J. Differential Geom. 29 (1989), no. 3, 665–683.
  • [18] P. B. Kronheimer and H. Nakajima, Yang-Mills instantons on ALE gravitational instantons, Math. Ann. 288 (1990), no. 2, 263–307.
  • [19] G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), no. 2, 447–498.
  • [20] G. Lusztig, Canonical bases arising from quantized enveloping algebras. II, Progr. Theoret. Phys. Suppl. (1990), no. 102, 175–201 (1991).
  • [21] G. Lusztig, Quivers, perverse sheaves, and quantized enveloping algebras, J. Amer. Math. Soc. 4 (1991), no. 2, 365–421.
  • [22] G. Lusztig, Affine quivers and canonical bases, Inst. Hautes Études Sci. Publ. Math. (1992), no. 76, 111–163.
  • [23] G. Lusztig, Introduction to quantum groups, Progress in Mathematics, vol. 110, Birkhäuser Boston Inc., Boston, MA, 1993.
  • [24] J. Marsden and A. Weinstein, Reduction of symplectic manifolds with symmetry, Rep. Mathematical Phys. 5 (1974), no. 1, 121–130.
  • [25] D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994.
  • [26] H. Nakajima, Homology of moduli spaces of instantons on ALE spaces. I, J. Differential Geom. 40 (1994), no. 1, 105–127.
  • [27] H. Nakajima, Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke Math. J. 76 (1994), no. 2, 365–416.
  • [28] H. Nakajima, Gauge theory on resolutions of simple singularities and simple Lie algebras, Internat. Math. Res. Notices (1994), no. 2, 61–74.
  • [29] H. Nakajima, Varieties associated with quivers, Representation theory of algebras and related topics (Mexico City, 1994), CMS Conf. Proc., vol. 19, Amer. Math. Soc., Providence, RI, 1996, pp. 139–157.
  • [30] R. Richardson, Affine coset spaces of reductive algebraic groups, Bull. London Math. Soc. 9 (1977), no. 1, 38–41.
  • [31] C. M. Ringel, Hall algebras and quantum groups, Invent. Math. 101 (1990), no. 3, 583–591.
  • [32] R. Sjamaar and E. Lerman, Stratified symplectic spaces and reduction, Ann. of Math. (2) 134 (1991), no. 2, 375–422.