Duke Mathematical Journal

An analogue of the Hom functor and a generalized nuclear democracy theorem

Haisheng Li

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 93, Number 1 (1998), 73-114.

Dates
First available: 19 February 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1077230637

Mathematical Reviews number (MathSciNet)
MR1620083

Zentralblatt MATH identifier
0956.17017

Digital Object Identifier
doi:10.1215/S0012-7094-98-09303-6

Subjects
Primary: 17B69: Vertex operators; vertex operator algebras and related structures

Citation

Li, Haisheng. An analogue of the Hom functor and a generalized nuclear democracy theorem. Duke Mathematical Journal 93 (1998), no. 1, 73--114. doi:10.1215/S0012-7094-98-09303-6. http://projecteuclid.org/euclid.dmj/1077230637.


Export citation

References

  • [BPZ] A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nuclear Phys. B 241 (1984), no. 2, 333–380.
  • [B] R. E. Borcherds, Vertex algebras, Kac-Moody algebras, and the Monster, Proc. Nat. Acad. Sci. U.S.A. 83 (1986), no. 10, 3068–3071.
  • [D1] C. Dong, Vertex algebras associated with even lattices, J. Algebra 161 (1993), no. 1, 245–265.
  • [D2] C. Dong, Representations of the moonshine module vertex operator algebra, Mathematical Aspects of Conformal and Topological Field Theories and Quantum Groups (South Hadley, MA, 1992), Contemp. Math., vol. 175, Amer. Math. Soc., Providence, 1994, pp. 27–36.
  • [DL] C. Dong and J. Lepowsky, Generalized Vertex Algebras and Relative Vertex Operators, Progr. Math., vol. 112, Birkhäuser, Boston, 1993.
  • [DLM1] C. Dong, H. Li, and G. Mason, Twisted representations of vertex operator algebras, Math. Ann. 310 (1998), no. 3, 571–600.
  • [DLM2] C. Dong, H. Li, and G. Mason, Hom functor and the associativity of tensor products of modules for vertex operator algebras, J. Algebra 188 (1997), no. 2, 443–475.
  • [DLM3] C. Dong, H. Li, and G. Mason, Regularity of rational vertex operator algebras, Adv. Math. 132 (1997), no. 1, 148–166.
  • [DMZ] C. Dong, G. Mason, and Y. Zhu, Discrete series of the Virasoro algebra and the moonshine module, Algebraic Groups and Their Generalizations: Quantum and Infinite-Dimensional Methods (University Park, Penn., 1991), Proc. Sympos. Pure Math., vol. 56, Pt. 2, Amer. Math. Soc., Providence, 1994, pp. 295–316.
  • [FFR] A. J. Feingold, I. B. Frenkel, and J. F. X. Ries, Spinor Construction of Vertex Operator Algebras, Triality, and $E^(1)_8$, Contemp. Math., vol. 121, Amer. Math. Soc., Providence, 1991.
  • [F] M. Finkelberg, Fusion categories, Ph.D. thesis, Harvard University, 1993.
  • [FHL] I. Frenkel, Y.-Z. Huang, and J. Lepowsky, On axiomatic approaches to vertex operator algebras and modules, Mem. Amer. Math. Soc. 104 (1993), no. 494, viii+64.
  • [FLM] I. Frenkel, J. Lepowsky, and A. Meurman, Vertex Operator Algebras and the Monster, Pure Appl. Math., vol. 134, Academic Press, Boston, 1988.
  • [FZ] I. Frenkel and Y.-C. Zhu, Vertex operator algebras associated to representations of affine and Virasoro algebras, Duke Math. J. 66 (1992), no. 1, 123–168.
  • [G] P. Goddard, Meromorphic conformal field theory, Infinite-Dimensional Lie Algebras and Groups (Luminy-Marseille, 1988), Adv. Ser. Math. Phys., vol. 7, World Sci., Teaneck, N.J., 1989, pp. 556–587.
  • [H1] Y.-Z. Huang, Vertex operator algebras and conformal field theory, Internat. J. Modern Phys. A 7 (1992), no. 10, 2109–2151.
  • [H2] Y.-Z. Huang, A theory of tensor products for module categories for a vertex operator algebra, IV, J. Pure Appl. Algebra 100 (1995), no. 1-3, 173–216.
  • [HL1] Y.-Z. Huang and J. Lepowsky, Toward a theory of tensor products for representations of a vertex operator algebra, Proceedings of the Twentieth International Conference on Differential Geometric Methods in Theoretical Physics (New York, 1991), Vol. 1, 2, World Sci., River Edge, N.J., 1992, pp. 344–354.
  • [HL2] Y.-Z. Huang and J. Lepowsky, Tensor products of modules for a vertex operator algebra and vertex tensor categories, Lie Theory and Geometry, Progr. Math., vol. 123, Birkhäuser, Boston, 1994, pp. 349–383.
  • [HL3] Y.-Z. Huang and J. Lepowsky, A theory of tensor products for module categories for a vertex operator algebra, I, Selecta Math. (N.S.) 1 (1995), 699–756.
  • [HL4] Y.-Z. Huang and J. Lepowsky, A theory of tensor products for module categories for a vertex operator algebra, II, Selecta Math. (N.S.) 1 (1995), 757–786.
  • [HL5] Y.-Z. Huang and J. Lepowsky, A theory of tensor products for module categories for a vertex operator algebra, III, J. Pure Appl. Algebra 100 (1995), no. 1-3, 141–171.
  • [J] N. Jacobson, Basic algebra. II, W. H. Freeman and Co., San Francisco, Calif., 1980.
  • [KL1] D. Kazhdan and G. Lusztig, Affine Lie algebras and quantum groups, Internat. Math. Res. Notices (1991), no. 2, 21–29.
  • [KL2] D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras, I, J. Amer. Math. Soc. 6 (1993), 905–947.
  • [KL3] D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras, II, J. Amer. Math. Soc. 6 (1993), 949–1011.
  • [Le] J. Lepowsky, Generalized Verma modules, loop space cohomology and MacDonald-type identities, Ann. Sci. École Norm. Sup. (4) 12 (1979), no. 2, 169–234.
  • [L1] H.-S. Li, Representation theory and tensor product theory for vertex operator algebras, Ph.D. thesis, Rutgers University, 1994.
  • [L2] H.-S. Li, Local systems of vertex operators, vertex superalgebras and modules, J. Pure Appl. Algebra 109 (1996), no. 2, 143–195.
  • [MS] G. Moore and N. Seiberg, Classical and quantum conformal field theory, Comm. Math. Phys. 123 (1989), no. 2, 177–254.
  • [TK] A. Tsuchiya and Y. Kanie, Vertex operators in conformal field theory on $\bf P^1$ and monodromy representations of braid group, Conformal Field Theory and Solvable Lattice Models (Kyoto, 1986), Adv. Stud. Pure Math., vol. 16, Academic Press, Boston, 1988, pp. 297–372.
  • [W] W. Q. Wang, Rationality of Virasoro vertex operator algebras, Internat. Math. Res. Notices (1993), no. 7, 197–211.
  • [Z] Y.-C. Zhu, Vertex operator algebras, elliptic functions and modular forms, Ph.D. thesis, Yale University, 1990.