Duke Mathematical Journal

Random matrices, Virasoro algebras, and noncommutative KP

M. Adler, T. Shiota, and P. van Moerbeke

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Duke Math. J. Volume 94, Number 2 (1998), 379-431.

First available in Project Euclid: 19 February 2004

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 58F07
Secondary: 17B68: Virasoro and related algebras 60H25: Random operators and equations [See also 47B80]


Adler, M.; Shiota, T.; van Moerbeke, P. Random matrices, Virasoro algebras, and noncommutative KP. Duke Math. J. 94 (1998), no. 2, 379--431. doi:10.1215/S0012-7094-98-09417-0. http://projecteuclid.org/euclid.dmj/1077230277.

Export citation


  • [1] M. Adler and P. van Moerbeke, A matrix integral solution to two-dimensional $W_ p$-gravity, Comm. Math. Phys. 147 (1992), no. 1, 25–56.
  • [2] M. Adler and P. van Moerbeke, Matrix integrals, Toda symmetries, Virasoro constraints, and orthogonal polynomials, Duke Math. J. 80 (1995), no. 3, 863–911.
  • [3] M. Adler and P. van Moerbeke, String-orthogonal polynomials, string equations and $2$-Toda symmetries, Comm. Pure Appl. Math. 50 (1997), no. 3, 241–290.
  • [4] M. Adler and P. van Moerbeke, Finite random Hermitian ensembles, to appear.
  • [5] M. Adler and P. van Moerbeke, The spectrum of coupled random matrices, to appear in Ann. of Math. (2), 1999.
  • [6] M. Adler, T. Shiota, and P. van Moerbeke, From the $w_\infty$-algebra to its central extension: A $\tau$-function approach, Phys. Lett. A 194 (1994), no. 1-2, 33–43.
  • [7] M. Adler, T. Shiota, and P. van Moerbeke, Random matrices, vertex operators and the Virasoro algebra, Phys. Lett. A 208 (1995), no. 1-2, 67–78.
  • [8] M. Adler, T. Shiota, and P. van Moerbeke, A Lax representation for the vertex operator and the central extension, Comm. Math. Phys. 171 (1995), no. 3, 547–588.
  • [9] M. Adler, T. Shiota, A. Morozov, and P. van Moerbeke, A matrix integral solution to $[P,Q]=P$ and matrix Laplace transforms, Comm. Math. Phys. 180 (1996), no. 1, 233–263.
  • [10] L. Alvarez-Gaumé, C. Gomez, and J. Lacki, Integrability in random matrix models, Phys. Lett. B 253 (1991), no. 1-2, 56–62.
  • [11] D. Bessis, C. Itzykson, and J. B. Zuber, Quantum field theory techniques in graphical enumeration, Adv. in Appl. Math. 1 (1980), no. 2, 109–157.
  • [12] E. Date, M. Jimbo, M. Kashiwara, and T. Miwa, Transformation groups for soliton equations, Nonlinear Integrable Systems—Classical Theory and Quantum Theory (Kyoto, 1981), World Sci., Singapore, 1983, pp. 39–119.
  • [13] P. Deift, A. Its, and X. Zhou, A Riemann-Hilbert approach to asymptotic problems arising in the theory of random matrix models, and also in the theory of integrable statistical mechanics, Ann. of Math. (2) 146 (1997), no. 1, 149–235.
  • [14] L. Dickey, Soliton Equations and Hamiltonian Systems, Adv. Ser. Math. Phys., vol. 12, World Sci., River Edge, N.J., 1991.
  • [15]1 F. Dyson, Statistical theory of the energy levels of complex systems, I, J. Math. Phys. 3 (1962), 140–156.
  • [15]2 F. Dyson, Statistical theory of the energy levels of complex systems, II, J. Math. Phys. 3 (1962), 157–165.
  • [15]3 F. Dyson, Statistical theory of the energy levels of complex systems, III, J. Math. Phys. 3 (1962), 166–175.
  • [16] F. Dyson, Fredholm determinants and inverse scattering problems, Comm. Math. Phys. 47 (1976), no. 2, 171–183.
  • [17] A. Its, A. G. Izergin, V. E. Korepin, and N. A. Slavnov, Differential equations for quantum correlation functions, Internat. J. Modern Phys. B 4 (1990), no. 5, 1003–1037.
  • [18] M. Jimbo, T. Miwa, Y. Môri, and M. Sato, Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent, Physica D 1 (1980), no. 1, 80–158.
  • [19] V. G. Kac, Infinite-Dimensional Lie Algebras, 3d ed., Cambridge Univ. Press, Cambridge, 1990.
  • [20] B. M. McCoy, Spin systems, statistical mechanics and Painlevé functions, Painlevé Transcendents (Sainte-Adèle, PQ, 1990), NATO Adv. Sci. Inst. Ser. B Phys., vol. 278, Plenum, New York, 1992, pp. 377–391.
  • [21] H. P. McKean, Integrable systems and algebraic curves, Global Analysis (Proc. Biennial Sem. Canad. Math. Congr., Univ. Calgary, Calgary, Alta., 1978), Lecture Notes in Math., vol. 755, Springer-Verlag, Berlin, 1979, pp. 83–200.
  • [22] M. L. Mehta, Random Matrices, 2d ed., Academic Press, Boston, 1991.
  • [23] M. L. Mehta, A nonlinear differential equation and a Fredholm determinant, J. Physique I 2 (1992), no. 9, 1721–1729.
  • [24] H. Peng, The spectrum of random matrices for symmetric ensembles, dissertation, Brandeis Univ., Waltham, Mass., 1997.
  • [25] C. E. Porter and N. Rosenzweig, Statistical properties of atomic and nuclear spectra, Ann. Acad. Sci. Fenn. Ser. A VI No. 44 (1960), 66.
  • [26] C. E. Porter and N. Rosenzweig, Repulsion of energy levels in complex atomic spectra, Phys. Rev. 120 (1960), 1698–1714.
  • [27] P. Sarnak, Arithmetic quantum chaos, The Schur Lectures (Tel Aviv, 1992), Israel Math. Conf. Proc., vol. 8, Bar-Ilan Univ., Ramat Gan, 1995, pp. 183–236.
  • [28] M. Sato, Soliton equations and the universal Grassmann manifold (by Noumi in Japanese), Math. Lect. Note Ser., vol. 18, Sophia University, Tokyo, 1984.
  • [29] T. Shiota, Characterization of Jacobian varieties in terms of soliton equations, Invent. Math. 83 (1986), no. 2, 333–382.
  • [30] N. A. Slavnov, Fredholm determinants and $\tau$-functions, Teoret. Mat. Fiz. 109 (1996), no. 3, 357–371.
  • [31] G. Szegö, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., New York, 1939.
  • [32] C. A. Tracy and H. Widom, Introduction to random matrices, Geometric and Quantum Aspects of Integrable Systems (Scheveningen, 1992), Lecture Notes in Phys., vol. 424, Springer-Verlag, Berlin, 1993, pp. 103–130.
  • [33] C. A. Tracy and H. Widom, Level-spacing distributions and the Airy kernel, Comm. Math. Phys. 159 (1994), no. 1, 151–174.
  • [34] C. A. Tracy and H. Widom, Level spacing distributions and the Bessel kernel, Comm. Math. Phys. 161 (1994), no. 2, 289–309.
  • [35] C. A. Tracy and H. Widom, Fredholm determinants, differential equations and matrix models, Comm. Math. Phys. 163 (1994), no. 1, 33–72.
  • [36] J. W. van de Leur, The Adler-Shiota-van Moerbeke formula for the BKP hierarchy, J. Math. Phys. 36 (1995), no. 9, 4940–4951.
  • [37] P. van Moerbeke, Integrable foundations of string theory, Lectures on Integrable Systems (Sophia-Antipolis, 1991), World Sci., River Edge, N.J., 1994, pp. 163–267.
  • [38] E. P. Wigner, On the statistical distribution of the widths and spacings of nuclear resonance levels, Proc. Cambridge Philos. Soc. 47 (1951), 790–798.
  • [39] E. Witten, Two-dimensional gravity and intersection theory on moduli space, Surveys in Differential Geometry (Cambridge, Mass., 1990), Lehigh Univ., Bethlehem, Penn., 1991, pp. 243–310.