Duke Mathematical Journal

Embeddings of $PGL_2(31)$ and $SL_2(32)$ in $E_8(\mathbb{C})$

Robert L. Griess, Jr. and A. J. E. Ryba

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Duke Math. J. Volume 94, Number 1 (1998), 181-211.

First available in Project Euclid: 19 February 2004

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 20G20: Linear algebraic groups over the reals, the complexes, the quaternions
Secondary: 20E32: Simple groups [See also 20D05] 20G40: Linear algebraic groups over finite fields


Griess, Jr., Robert L.; Ryba, A. J. E. Embeddings of P G L 2 ( 31 ) and S L 2 ( 32 ) in E 8 ( ℂ ) . Duke Math. J. 94 (1998), no. 1, 181--211. doi:10.1215/S0012-7094-98-09409-1. http://projecteuclid.org/euclid.dmj/1077230082.

Export citation


  • [A] M. Artin, Algebraic approximation of structures over complete local rings, Inst. Hautes Études Sci. Publ. Math. (1969), no. 36, 23–58.
  • [AM] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, Mass., 1969.
  • [BT] F. Bruhat and J. Tits, Groupes algebriques sur un corps local, Chapitre III: Complements et applications à la cohomologie galoisienne, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987), no. 3, 671–698.
  • [Ca] R. W. Carter, Simple Groups of Lie Type, Wiley Classics Library, Wiley, New York, 1989.
  • [CG] A. M. Cohen and R. L. Griess, Jr., On finite simple subgroups of the complex Lie group of type $E_8$, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986), Proc. Sympos. Pure Math., Part 2, vol. 47, Amer. Math. Soc., Providence, 1987, pp. 367–405.
  • [CGL] A. M. Cohen, R. L. Griess, Jr., and B. Lisser, The group $L(2,61)$ embeds in the Lie group of type $E_ 8$, Comm. Algebra 21 (1993), no. 6, 1889–1907.
  • [Co] I. S. Cohen, On the structure and ideal theory of complete local rings, Trans. Amer. Math. Soc. 59 (1946), 54–106.
  • [Con] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of finite groups, Oxford University Press, Eynsham, 1985.
  • [Gi] P. Gille, Torseurs sur la droite affine et $R$-équivalence, thèse, Université de Paris-Sud, Orsay, 1994.
  • [Gr] R. L. Griess, Jr., Elementary abelian $p$-subgroups of algebraic groups, Geom. Dedicata 39 (1991), no. 3, 253–305.
  • [HS] H. Hasse and F. K. Schmidt, Die Struktur diskret bewerteter Körper, J. Reine. Angew. Math. 170 (1934), 4–63.
  • [IM] N. Iwahori and H. Matsumoto, On some Bruhat decomposition and the structure of the Hecke rings of $p$-adic Chevalley groups, Inst. Hautes Études Sci. Publ. Math. (1965), no. 25, 5–48.
  • [Kn] M. Kneser, Galois-Kohomologie halbeinfacher algebraischer Gruppen über $p$-adischen Körpern, II, Math. Z. 89 (1965), 250–272.
  • [Kul] B. Kulshammer, Algebraic representations of finite groups, Universität Augsburg, 1992.
  • [Lan] S. Lang, Algebra, Addison-Wesley, Reading, Mass., 1965.
  • [Lar] M. Larsen, Maximality of Galois actions for compatible systems, Duke Math. J. 80 (1995), no. 3, 601–630.
  • [M] S. MacLane, Subfields and automorphism groups of $p$-adic fields, Ann. of Math. 40 (1939), 423–442.
  • [MMPP] W. G. McKay, R. V. Moody, J. Patera, and A. Pianzola, The 785 conjugacy classes of rational elements of finite order in $E_8$, Lie Algebra and Related Topics (Madison, Wisc., 1988), Contemp. Math., vol. 110, Amer. Math. Soc., Providence, 1990, pp. 79–123.
  • [Mi] J. S. Milne, Étale Cohomology, Princeton Math. Series, vol. 33, Princeton Univ. Press, Princeton, 1980.
  • [MP] A. Moy and G. Prasad, Unrefined minimal $K$-types for $p$-adic groups, Invent. Math. 116 (1994), no. 1-3, 393–408.
  • [PR] V. Platonov and A. Rapinchuk, Algebraic Groups and Number Theory, Pure and Appl. Math., vol. 139, Academic Press, Boston, 1994, trans. R. Rowen.
  • [Po] H. K. Pollatsek, First cohomology groups of some linear groups over fields of characteristic two, Illinois J. Math. 15 (1971), 393–417.
  • [R] A. J. E. Ryba, Matrix generators for the Held group, Computers in Algebra (Chicago, Ill., 1985), Lecture Notes in Pure and Appl. Math., vol. 111, Dekker, New York, 1988, pp. 135–141.
  • [S1] J.-P. Serre, Extensions icosaédriques, Seminar on Number Theory, 1979–1980, Univ. Bordeaux I, Talence, 1980, also in Oeuvres, Vol. III (1972–1984), Springer-Verlag, Berlin, 1986, 550–554, Exp. No. 19, 7.
  • [S2] J.-P. Serre, Local Fields, Grad. Texts in Math., vol. 67, Springer-Verlag, New York, 1979, trans. M. J. Greenberg.
  • [S3] J.-P. Serre, Exemples de plongements des groupes ${\rm PSL}\sb 2({\bf F}\sb p)$ dans des groupes de Lie simples, Invent. Math. 124 (1996), no. 1-3, 525–562.
  • [Sl] P. Slodowy, Two notes on a finiteness problem in the representation theory of finite groups, Algebraic Groups and Lie Groups, Austral. Math. Soc. Lect. Ser., vol. 9, Cambridge Univ. Press, Cambridge, 1997, pp. 331–348.
  • [T] J. Tits, Reductive groups over local fields, Automorphic Forms, Representations and $L$-Functions (Corvallis, Ore., 1977), Proc. Sympos. Pure Math., Part 1, vol. 33, Amer. Math. Soc., Providence, 1979, pp. 29–69.
  • [W]1 A. Weil, Remarks on the cohomology of groups, Ann. of Math. (2) 80 (1964), 149–157.
  • [W]2 A. Weil, Scientific Works, Collected Papers, Vol. III (1964–1978), Springer-Verlag, New York, 1979.