Duke Mathematical Journal

Quantum Galois theory for finite groups

Akihide Hanaki, Masahiko Miyamoto, and Daisuke Tambara

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 97, Number 3 (1999), 541-544.

Dates
First available in Project Euclid: 19 February 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1077228802

Digital Object Identifier
doi:10.1215/S0012-7094-99-09720-X

Mathematical Reviews number (MathSciNet)
MR1684904

Zentralblatt MATH identifier
0977.17029

Subjects
Primary: 17B69: Vertex operators; vertex operator algebras and related structures
Secondary: 17B67: Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras 17B68: Virasoro and related algebras

Citation

Hanaki, Akihide; Miyamoto, Masahiko; Tambara, Daisuke. Quantum Galois theory for finite groups. Duke Math. J. 97 (1999), no. 3, 541--544. doi:10.1215/S0012-7094-99-09720-X. http://projecteuclid.org/euclid.dmj/1077228802.


Export citation

References

  • [B] Richard E. Borcherds, Vertex algebras, Kac-Moody algebras, and the Monster, Proc. Nat. Acad. Sci. U.S.A. 83 (1986), no. 10, 3068–3071.
  • [DVVV] Robbert Dijkgraaf, Cumrun Vafa, Erik Verlinde, and Herman Verlinde, The operator algebra of orbifold models, Comm. Math. Phys. 123 (1989), no. 3, 485–526.
  • [DLM] Chongying Dong, Haisheng Li, and Geoffrey Mason, Compact automorphism groups of vertex operator algebras, Internat. Math. Res. Notices (1996), no. 18, 913–921.
  • [DM1] Chongying Dong and Geoffrey Mason, On quantum Galois theory, Duke Math. J. 86 (1997), no. 2, 305–321.
  • [DM2] C. Dong and G. Mason, On the operator content of nilpotent orbifold models, preprint.
  • [FLM] Igor Frenkel, James Lepowsky, and Arne Meurman, Vertex operator algebras and the Monster, Pure and Applied Mathematics, vol. 134, Academic Press Inc., Boston, MA, 1988.