Duke Mathematical Journal

The Frobenius and monodromy operators for curves and abelian varieties

Robert Coleman and Adrian Iovita

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 97, Number 1 (1999), 171-215.

Dates
First available in Project Euclid: 19 February 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1077228507

Digital Object Identifier
doi:10.1215/S0012-7094-99-09708-9

Mathematical Reviews number (MathSciNet)
MR1682268

Zentralblatt MATH identifier
0962.14030

Subjects
Primary: 14F30: $p$-adic cohomology, crystalline cohomology
Secondary: 14F40: de Rham cohomology [See also 14C30, 32C35, 32L10] 14K15: Arithmetic ground fields [See also 11Dxx, 11Fxx, 11G10, 14Gxx]

Citation

Coleman, Robert; Iovita, Adrian. The Frobenius and monodromy operators for curves and abelian varieties. Duke Math. J. 97 (1999), no. 1, 171--215. doi:10.1215/S0012-7094-99-09708-9. http://projecteuclid.org/euclid.dmj/1077228507.


Export citation

References

  • [B1] F. Baldassarri, Comparaison entre la cohomologie algébrique et la cohomologie $p$-adique rigide à coefficients dans un module différentiel. I. Cas des courbes, Invent. Math. 87 (1987), no. 1, 83–99.
  • [B2] F. Baldassarri, Comparaison entre la cohomologie algébrique et la cohomologie $p$-adique rigide à coefficients dans un module différentiel. II. Cas des singularités régulières à plusieurs variables, Math. Ann. 280 (1988), no. 3, 417–439.
  • [BC] Francesco Baldassarri and Bruno Chiarellotto, Algebraic versus rigid cohomology with logarithmic coefficients, Barsotti Symposium in Algebraic Geometry (Abano Terme, 1991), Perspect. Math., vol. 15, Academic Press, San Diego, CA, 1994, pp. 11–50.
  • [B1K] Spencer Bloch and Kazuya Kato, $L$-functions and Tamagawa numbers of motives, The Grothendieck Festschrift, Vol. I, Progr. Math., vol. 86, Birkhäuser Boston, Boston, MA, 1990, pp. 333–400.
  • [BoL] Siegfried Bosch and Werner Lütkebohmert, Stable reduction and uniformization of abelian varieties. II, Invent. Math. 78 (1984), no. 2, 257–297.
  • [Bou] N. Bourbaki, Lie Groups and Lie Algebras, Part I, Hermann, Addision-Wesley, Reading, Massachusetts, 1975.
  • [Co1] Robert F. Coleman, Dilogarithms, regulators and $p$-adic $L$-functions, Invent. Math. 69 (1982), no. 2, 171–208.
  • [Co2] Robert F. Coleman, Torsion points on curves and $p$-adic abelian integrals, Ann. of Math. (2) 121 (1985), no. 1, 111–168.
  • [Co3] Robert F. Coleman, Reciprocity laws on curves, Compositio Math. 72 (1989), no. 2, 205–235.
  • [Co4] Robert F. Coleman, The universal vectorial bi-extension and $p$-adic heights, Invent. Math. 103 (1991), no. 3, 631–650.
  • [Co5] Robert F. Coleman, A $p$-adic Shimura isomorphism and $p$-adic periods of modular forms, $p$-adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991), Contemp. Math., vol. 165, Amer. Math. Soc., Providence, RI, 1994, pp. 21–51.
  • [Co6] R. Coleman, Duality for the de Rham cohomology of an abelian schemes, to appear in Ann. Inst. Fourier (Grenoble).
  • [Co7] R. Coleman, The monodromy pairing, to appear.
  • [CdS] Robert Coleman and Ehud de Shalit, $p$-adic regulators on curves and special values of $p$-adic $L$-functions, Invent. Math. 93 (1988), no. 2, 239–266.
  • [CC] Maurizio Candilera and Valentino Cristante, Periods and duality of $p$-adic Barsotti-Tate groups, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 22 (1995), no. 4, 545–593.
  • [Cz] Pierre Colmez, Périodes $p$-adiques des variétés abéliennes, Math. Ann. 292 (1992), no. 4, 629–644.
  • [Fa] Gerd Faltings, Crystalline cohomology and $p$-adic Galois-representations, Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988), Johns Hopkins Univ. Press, Baltimore, MD, 1989, pp. 25–80.
  • [Fo1] Jean-Marc Fontaine, Modules galoisiens, modules filtrés et anneaux de Barsotti-Tate, Journées de Géométrie Algébrique de Rennes. (Rennes, 1978), Vol. III, Astérisque, vol. 65, Soc. Math. France, Paris, 1979, pp. 3–80.
  • [Fo2] Jean-Marc Fontaine, Formes différentielles et modules de Tate des variétés abéliennes sur les corps locaux, Invent. Math. 65 (1981/82), no. 3, 379–409.
  • [Fo3] Jean-Marc Fontaine, Sur certains types de représentations $p$-adiques du groupe de Galois d'un corps local; construction d'un anneaue Barsotti-Tate, Ann. of Math. (2) 115 (1982), no. 3, 529–577.
  • [Fo4] Jean-Marc Fontaine, Le corps des périodes $p$-adiques, Astérisque (1994), no. 223, 59–111.
  • [Fo5] Jean-Marc Fontaine, Représentations $p$-adiques semi-stables, Astérisque (1994), no. 223, 113–184.
  • [G] A. Grothendieck, Groupes de monodromie en géométrie algébrique. I, Springer-Verlag, Berlin, 1972, Chap. VII-IX, in Séminaire de Géométrie Algébrique, du Bois-Marie 1967–1969, Lecture Notes in Math. 288.
  • [Hk] Osamu Hyodo and Kazuya Kato, Semi-stable reduction and crystalline cohomology with logarithmic poles, Astérisque (1994), no. 223, 221–268, Périodes $p$-adiques (Bures-sur-Yvette, 1988).
  • [I] A. Iovita, $p$-adic cohomology of Abelian varieties, Ph.D. thesis, Boston University, Boston, 1996.
  • [Ka] Kazuya Kato, Logarithmic structures of Fontaine-Illusie, Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988), Johns Hopkins Univ. Press, Baltimore, MD, 1989, pp. 191–224.
  • [KM] Nicholas M. Katz and William Messing, Some consequences of the Riemann hypothesis for varieties over finite fields, Invent. Math. 23 (1974), 73–77.
  • [LS] Bernard Le Stum, La structure de Hyodo-Kato pour les courbes, Rend. Sem. Mat. Univ. Padova 94 (1995), 279–301.
  • [Mk] A. Mokrane, La suite spectrale des poids en cohomologie de Hyodo-Kato, Duke Math. J. 72 (1993), no. 2, 301–337.
  • [M] P. Monsky, Formal cohomology. II. The cohomology sequence of a pair, Ann. of Math. (2) 88 (1968), 218–238.
  • [MW] P. Monsky and G. Washnitzer, Formal cohomology. I, Ann. of Math. (2) 88 (1968), 181–217.
  • [N] Jan Nekovář, On $p$-adic height pairings, Séminaire de Théorie des Nombres, Paris, 1990–91, Progr. Math., vol. 108, Birkhäuser Boston, Boston, MA, 1993, pp. 127–202.
  • [R] Michel Raynaud, Variétés abéliennes et géométrie rigide, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1, Gauthier-Villars, Paris, 1971, pp. 473–477.
  • [ReP] Siegfried Bosch and Werner Lütkebohmert, Stable reduction and uniformization of abelian varieties. II, Invent. Math. 78 (1984), no. 2, 257–297.
  • [T] J. T. Tate, $p-divisible$ $groups.$, Proc. Conf. Local Fields (Driebergen, 1966), Springer, Berlin, 1967, pp. 158–183.
  • [U] P. Ullrich, Rigid analytic covering maps, Proceedings of the conference on $p$-adic analysis (Houthalen, 1987), Vrije Univ. Brussel, Brussels, 1986, pp. 159–171.
  • [Z] Yu. G. Zarhin, $p$-adic abelian integrals and commutative Lie groups, J. Math. Sci. 81 (1996), no. 3, 2744–2750.