Duke Mathematical Journal

Rigid cohomology and invariant cycles for a semistable log scheme

Bruno Chiarellotto

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 97, Number 1 (1999), 155-169.

Dates
First available in Project Euclid: 19 February 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1077228506

Digital Object Identifier
doi:10.1215/S0012-7094-99-09707-7

Mathematical Reviews number (MathSciNet)
MR1682272

Zentralblatt MATH identifier
0985.14009

Subjects
Primary: 14F30: $p$-adic cohomology, crystalline cohomology
Secondary: 14F40: de Rham cohomology [See also 14C30, 32C35, 32L10]

Citation

Chiarellotto, Bruno. Rigid cohomology and invariant cycles for a semistable log scheme. Duke Math. J. 97 (1999), no. 1, 155--169. doi:10.1215/S0012-7094-99-09707-7. http://projecteuclid.org/euclid.dmj/1077228506.


Export citation

References

  • [SGA4] M. Artin, Grothendieck A., and J. L. Verdier, Théorie des topos et cohomologie étale des schémas. Tome 2, Springer-Verlag, Berlin, 1972, Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4), Lecture Notes in Math., 270.
  • [B1] Pierre Berthelot, Cohomologie cristalline des schémas de caractéristique$p>0$, Springer-Verlag, Berlin, 1974, Lecture Notes in Math. 407.
  • [B2] Pierre Berthelot, Finitude et pureté cohomologique en cohomologie rigide, Invent. Math. 128 (1997), no. 2, 329–377.
  • [B3] P. Berthelot, Cohomologie rigide et cohomologie rigide à support propre, prepublication 96-03, Institut de Recherche Mathématique Avancée, Rennes, 1996.
  • [G] M. Gros, Cohomologie de de Rham et réduction semistable: l'aspect rigide, preprint, Rennes, 1994.
  • [H1] Osamu Hyodo, A note on $p$-adic étale cohomology in the semistable reduction case, Invent. Math. 91 (1988), no. 3, 543–557.
  • [H2] Osamu Hyodo, On the de Rham-Witt complex attached to a semi-stable family, Compositio Math. 78 (1991), no. 3, 241–260.
  • [HK] Osamu Hyodo and Kazuya Kato, Semi-stable reduction and crystalline cohomology with logarithmic poles, Astérisque (1994), no. 223, 221–268.
  • [KM] Nicholas M. Katz and William Messing, Some consequences of the Riemann hypothesis for varieties over finite fields, Invent. Math. 23 (1974), 73–77.
  • [K] Reinhardt Kiehl, Theorem A und Theorem B in der nichtarchimedischen Funktionentheorie, Invent. Math. 2 (1967), 256–273.
  • [I1] Luc Illusie, Complexe de de Rham-Witt et cohomologie cristalline, Ann. Sci. École Norm. Sup. (4) 12 (1979), no. 4, 501–661.
  • [I2] Luc Illusie, Autour du théorème de monodromie locale, Astérisque (1994), no. 223, 9–57, in Périodes $p$-adiques (Bures-sur-Yvette, 1988).
  • [LS] Bernard Le Stum, Filtration par le poids sur la cohomologie de de Rham d'une courbe projective non singulière sur un corpsultramétrique complet, Rend. Sem. Mat. Univ. Padova 93 (1995), 43–85.
  • [M] A. Mokrane, La suite spectrale des poids en cohomologie de Hyodo-Kato, Duke Math. J. 72 (1993), no. 2, 301–337.
  • [O] Arthur Ogus, The convergent topos in characteristic $p$, The Grothendieck Festschrift, Vol. III, Progr. Math., vol. 88, Birkhäuser Boston, Boston, MA, 1990, pp. 133–162.
  • [SZ] Morihiko Saito and Steven Zucker, The kernel spectral sequence of vanishing cycles, Duke Math. J. 61 (1990), no. 2, 329–339.
  • [St] Joseph Steenbrink, Limits of Hodge structures, Invent. Math. 31 (1975/76), no. 3, 229–257.
  • [Z] Steven Zucker, Variation of mixed Hodge structure. II, Invent. Math. 80 (1985), no. 3, 543–565.