Duke Mathematical Journal

Maximal operators over arbitrary sets of directions

Nets Hawk Katz

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Duke Math. J. Volume 97, Number 1 (1999), 67-79.

First available in Project Euclid: 19 February 2004

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 42B25: Maximal functions, Littlewood-Paley theory
Secondary: 47B38: Operators on function spaces (general)


Katz, Nets Hawk. Maximal operators over arbitrary sets of directions. Duke Math. J. 97 (1999), no. 1, 67--79. doi:10.1215/S0012-7094-99-09702-8. http://projecteuclid.org/euclid.dmj/1077228501.

Export citation


  • [Ba] Jose A. Barrionuevo, A note on the Kakeya maximal operator, Math. Res. Lett. 3 (1996), no. 1, 61–65.
  • [ChF] Sun-Yung A. Chang and Robert Fefferman, A continuous version of duality of $H\sp1$ with BMO on the bidisc, Ann. of Math. (2) 112 (1980), no. 1, 179–201.
  • [CF] A. Cordoba and R. Fefferman, On the equivalence between the boundedness of certain classes of maximal and multiplier operators in Fourier analysis, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), no. 2, 423–425.
  • [D] J. Duoandikoetxea Zuazo, Análisis de Fourier, 1991, Ediciones de la Universidad Autonoma de Madrid.
  • [St] Jan-Olov Strömberg, Maximal functions associated to rectangles with uniformly distributed directions, Ann. Math. (2) 107 (1978), no. 2, 399–402.