Duke Mathematical Journal

On the transfer of distributions: Weighted orbital integrals

James Arthur

Article information

Source
Duke Math. J. Volume 99, Number 2 (1999), 209-283.

Dates
First available in Project Euclid: 19 February 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1077227772

Digital Object Identifier
doi:10.1215/S0012-7094-99-09909-X

Mathematical Reviews number (MathSciNet)
MR1708030

Zentralblatt MATH identifier
0938.22019

Subjects
Primary: 22E55: Representations of Lie and linear algebraic groups over global fields and adèle rings [See also 20G05]
Secondary: 11F70: Representation-theoretic methods; automorphic representations over local and global fields 11R39: Langlands-Weil conjectures, nonabelian class field theory [See also 11Fxx, 22E55] 22E50: Representations of Lie and linear algebraic groups over local fields [See also 20G05]

Citation

Arthur, James. On the transfer of distributions: Weighted orbital integrals. Duke Math. J. 99 (1999), no. 2, 209--283. doi:10.1215/S0012-7094-99-09909-X. http://projecteuclid.org/euclid.dmj/1077227772.


Export citation

References

  • [1] Jeffrey Adams, Dan Barbasch, and David A. Vogan, Jr., The Langlands classification and irreducible characters for real reductive groups, Progress in Mathematics, vol. 104, Birkhäuser Boston Inc., Boston, MA, 1992.
  • [2] James Arthur, The trace formula in invariant form, Ann. of Math. (2) 114 (1981), no. 1, 1–74.
  • [3] James Arthur, The invariant trace formula. I. Local theory, J. Amer. Math. Soc. 1 (1988), no. 2, 323–383.
  • [4] James Arthur, A local trace formula, Inst. Hautes Études Sci. Publ. Math. (1991), no. 73, 5–96.
  • [5] James Arthur, On elliptic tempered characters, Acta Math. 171 (1993), no. 1, 73–138.
  • [6] James Arthur, On the Fourier transforms of weighted orbital integrals, J. Reine Angew. Math. 452 (1994), 163–217.
  • [7] James Arthur, On local character relations, Selecta Math. (N.S.) 2 (1996), no. 4, 501–579.
  • [8] James Arthur, Canonical normalization of weighted characters and a transfer conjecture, C. R. Math. Acad. Sci. Soc. R. Can. 20 (1998), no. 2, 33–52.
  • [9] James Arthur and Laurent Clozel, Simple algebras, base change, and the advanced theory of the trace formula, Annals of Mathematics Studies, vol. 120, Princeton University Press, Princeton, NJ, 1989.
  • [10] Mikhail Borovoi, Abelian Galois cohomology of reductive groups, Mem. Amer. Math. Soc. 132 (1998), no. 626, viii+50.
  • [11] Thomas C. Hales, The fundamental lemma for $\rm Sp(4)$, Proc. Amer. Math. Soc. 125 (1997), no. 1, 301–308.
  • [12] Robert E. Kottwitz, Rational conjugacy classes in reductive groups, Duke Math. J. 49 (1982), no. 4, 785–806.
  • [13] Robert E. Kottwitz, Stable trace formula: cuspidal tempered terms, Duke Math. J. 51 (1984), no. 3, 611–650.
  • [14] Robert E. Kottwitz, Stable trace formula: elliptic singular terms, Math. Ann. 275 (1986), no. 3, 365–399.
  • [15] R. P. Langlands and D. Shelstad, On the definition of transfer factors, Math. Ann. 278 (1987), no. 1-4, 219–271.
  • [16] D. Shelstad, $L$-indistinguishability for real groups, Math. Ann. 259 (1982), no. 3, 385–430.
  • [17] J.-L. Waldspurger, Sur les intégrales orbitales tordues pour les groupes linéaires: un lemme fondamental, Canad. J. Math. 43 (1991), no. 4, 852–896.
  • [18] J.-L. Waldspurger, Le lemme fondamental implique le transfert, Compositio Math. 105 (1997), no. 2, 153–236.