Duke Mathematical Journal

Arithmetic of linear algebraic groups over 2-dimensional geometric fields

J.-L. Colliot-Thélàne, P. Gille, and R. Parimala

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 121, Number 2 (2004), 285-341.

Dates
First available in Project Euclid: 12 February 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1076621987

Digital Object Identifier
doi:10.1215/S0012-7094-04-12124-4

Mathematical Reviews number (MathSciNet)
MR2034644

Subjects
Primary: 11E72: Galois cohomology of linear algebraic groups [See also 20G10] 20G35: Linear algebraic groups over adèles and other rings and schemes
Secondary: 20G15: Linear algebraic groups over arbitrary fields 14G25: Global ground fields

Citation

Colliot-Thélàne, J.-L.; Gille, P.; Parimala, R. Arithmetic of linear algebraic groups over 2-dimensional geometric fields. Duke Math. J. 121 (2004), no. 2, 285--341. doi:10.1215/S0012-7094-04-12124-4. http://projecteuclid.org/euclid.dmj/1076621987.


Export citation

References

  • M. Artin, Two-dimensional orders of finite representation type, Manuscripta Math. 58 (1987), 445--471.
  • M. Artin, A. Grothendieck, and J.-L. Verdier, eds., Théorie des topos et cohomologie étale des schémas 1, 2, 3, Séminaire de Géométrie Algébrique du Bois-Marie (SGA 4), Lecture Notes in Math. 269, 270, 305, Springer, Berlin, 1972, 1972, 1973.,
  • E. Bayer-Fluckiger and R. Parimala, Galois cohomology of the classical groups over fields of cohomological dimension $\leq 2$, Invent. Math. 122 (1995), 195--229.
  • M. V. Borovoi, Abelianization of the second nonabelian Galois cohomology, Duke Math. J. 72 (1993), 217--239.
  • --------, Abelian Galois cohomology of reductive groups, Mem. Amer. Math. Soc. 132 (1998), no. 626.
  • F. Bruhat and J. Tits, Groupes algébriques sur un corps local, III: Compléments et applications à la cohomologie galoisienne, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987), 671--698.
  • V. I. Chernousov, The kernel of the Rost invariant, Serre's Conjecture II and the Hasse principle for quasi-split groups of type $^3,6D_4$, $E_6$, $E_7$, Math. Ann. 326 (2003), 297--330.
  • V. I. Chernousov and A. S. Merkurjev, $R$-equivalence and special unitary groups, J. Algebra 209 (1998), 175--198.
  • V. I. Chernousov and V. P. Platonov, The rationality problem for semisimple group varieties, J. Reine Angew. Math. 504 (1998), 1--28.
  • J.-L. Colliot-Thélène, Exposant et indice d'algèbres simples centrales non ramifiées, with an appendix by O. Gabber, Enseign. Math. 48 (2002), 127--146.
  • J.-L. Colliot-Thélène, P. Gille, and R. Parimala, Arithmétique des groupes algébriques linéaires sur certains corps géométriques de dimension deux, C.R. l'Acad. Sci. Paris Sér. I Math. 333 (2001) 827--832.
  • J.-L. Colliot-Thélène, M. Ojanguren, and R. Parimala, "Quadratic forms over fraction fields of two-dimensional Henselian rings and Brauer groups of related schemes" in Algebra, Arithmetic and Geometry, I, II (Mumbai, 2000), Tata Inst. Fund. Res. Stud. Math. 16, Tata Inst. Fund. Res., Mumbai, 2002, 185--217.
  • J.-L. Colliot-Thélène and J.-J. Sansuc, La R-équivalence sur les tores, Ann. Sci. école Norm. Sup. (4) 10 (1977), 175--229.
  • --. --. --. --., La descente sur les variétés rationnelles, II, Duke Math. J. 54 (1987), 375--492.
  • --. --. --. --., Principal homogeneous spaces under flasque tori: Aplications, J. Algebra 106 (1987), 148--205.
  • I. Dejaiffe, D. W. Lewis, and J.-P. Tignol, Witt equivalence of central simple algebras with involution, Rend. Circ. Mat. Palermo (2) 49 (2000), 325--342.
  • M. Demazure and A. Grothendieck, eds., Schémas en groupes, I, II, III, Séminaire de Géométrie Algébrique du Bois-Marie (SGA 3), Lecture Notes in Math. 151, 152, 153, Springer, Berlin, 1970, 1962/1964, 1962/1964.,
  • J.-C. Douai, $2$- Cohomologie galoisienne des groupes semi-simple, thèse d'état, Université de Lille 1, Lille, France, 1976.
  • Y. Z. Flicker, C. Scheiderer, and R. Sujatha, Grothendieck's theorem on non-abelian $H^2$ and local-global principles, J. Amer. Math. Soc. 11 (1998), 731--750.
  • R. S. Garibaldi, Isotropic trialitarian algebraic groups, J. Algebra 210 (1998), 385--418.
  • P. Gille, La $R$-équivalence sur les groupes algébriques réductifs définis sur un corps global, Inst. Hautes études Sci. Publ. Math. 86 (1997), 199--235.
  • --. --. --. --., Cohomologie des groupes quasi-déployés sur des corps de dimension cohomologique $\leq 2$, Compositio Math. 125 (2001), 283--325.
  • A. Grothendieck, "Le groupe de Brauer I, II, III" in Dix exposés sur la cohomologie des schémas, North-Holland, Amsterdam, 1968, 46--66.; 67--87.; 88--188.,
  • A. Grothendieck and J. Dieudonné, éléments de géométrie algébrique, IV: étude locale des schémas et des morphismes de schémas, I, Inst. Hautes études Sci. Publ. Math. 20 (1964).
  • --------, éléments de géométrie algébrique, IV: étude locale des schémas et des morphismes de schémas, II, Inst. Hautes études Sci. Publ. Math. 24 (1965).
  • G. Harder, Bericht über neuere Resultate der Galoiskohomologie halbeinfacher Gruppen, Jber. Deutsch. Math.-Verein. 70 (1967/1968), 182--216.
  • --. --. --. --., Halbeinfache Gruppenschemata über vollständigen Kurven, Invent. Math. 6 (1968), 107--149.
  • P. Jaworski, On the strong Hasse principle for fields of quotients of power series rings in two variables, Math. Z. 236 (2001), 531--566.
  • M. Kneser, "Schwache Approximation in algebraischen Gruppen" in Colloque sur la théorie des groupes algébriques (Brussels, 1962), Gauthier-Villars, Paris, 1962, 41--52.
  • --------, Lectures on Galois Cohomology of Classical Groups, notes by P. Jothilingam, Tata Inst. Fund. Res. Lectures on Math. 47, Tata Inst. Fund. Res., Bombay, 1969.
  • M.-A. Knus, A. S. Merkurjev, M. Rost, and J.-P. Tignol, The Book of Involutions, with a preface by J. Tits, Amer. Math. Soc. Colloq. Publ. 44, Amer. Math. Soc., Providence, 1998.
  • H. Matsumura, Commutative Algebra, 2nd ed., Math. Lecture Note Ser. 56, Benjamin/Cummings, Reading, Mass., 1980.
  • A. S. Merkurjev, Generic element in $SK_1$ for simple algebras, $K$-Theory 7 (1993), 1--3.
  • --. --. --. --., "$K$-theory and Algebraic groups" in European Congress of Mathematics, Vol. II (Budapest, 1996), Progr. Math. 169, Birkhäuser, Basel, 1998, 43--72.
  • A. S. Merkurjev, I. A. Panin, and A. R. Wadsworth, Index reduction formulas for twisted flag varieties, I, $K$-Theory 10 (1996), 517--596.
  • --. --. --. --., Index reduction formulas for twisted flag varieties, II, $K$-Theory 14 (1998), 101--196.
  • A. S. Merkurjev and J.-P. Tignol, The multipliers of similitudes and the Brauer group of homogeneous varieties, J. Reine Angew. Math. 461 (1995), 13--47.
  • N. Q. Th\v ańg, "Weak approximation, $R$-equivalence and Whitehead groups" in Algebraic $K$-Theory (Toronto, 1996), Fields Inst. Commun. 16, Amer. Math. Soc., Providence, 1997, 345--354.
  • A. Pfister, Quadratic forms with applications to algebraic geometry and topology, London Math. Soc. Lecture Notes Ser. 217, Cambridge Univ. Press, Cambridge, 1995.
  • V. P. Platonov and A. S. Rapinchuk, Algebraic Groups and Number Theory, Academic Press, Boston, 1994.
  • J.-J. Sansuc, Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres, J. Reine Angew. Math. 327 (1981), 12--80.
  • W. Scharlau, Quadratic and Hermitian forms, Grundlehren Math. Wiss. 270, Springer, Berlin, 1985.
  • J.-P. Serre, Lie algebras and Lie groups: Lectures given at Harvard University, 1964, Benjamin, New York, 1965.
  • --------, Cohomologie galoisienne, 5th ed., Lecture Notes in Math. 5, Springer, Berlin, 1994.
  • --. --. --. --., Cohomologie galoisienne: Progrès et problèmes, Astérisque 227 (1995), 229--257., Séminaire Bourbaki 1993/1994, exp. no. 783.
  • A. A. Suslin, Algebraic $K$-theory and norm residue homomorphism, J. Soviet Math. 30 (1985), 2556--2611.
  • J. Tits, "Classification of Algebraic Semisimple Groups" in Algebraic Groups and Discontinuous Sugroups (Boulder, Colo., 1965), Proc. Sympos. Pure Math. 9, Amer. Math. Soc., Providence, 1966, 33--62.
  • --. --. --. --., Strongly inner anisotropic forms of simple algebraic groups, J. Algebra 131 (1990), 648--677.
  • V. E. Voskresenkiǐ, On the reduced Whitehead group of a simple algebra) (in Russian), Uspekhi Mat. Nauk 32, no. 6 (1977), 247--248.
  • --------, Algebraic Groups and Their Birational Invariants, Transl. Math. Monogr. 179, Amer. Math. Soc., Providence, 1998.
  • V. I. Yanchevskiǐ [V. I. Jančevskiǐ], Simple algebras with involutions, and unitary groups (in Russian), Mat. Sb. (N.S.) 93 (135) (1974), 368--380., 487; English translation in Sb. Math. 22 (1974), 372--385.
  • --. --. --. --., The commutator subgroups of simple algebras with surjective reduced norm (in Russian), Dokl. Akad. Nauk SSSR 221 (1975), 1056--1058.; English translation in Soviet Math. Dokl. 16 (1975), 492--495.
  • --. --. --. --., Reduced unitary $K$-theory: Applications to algebraic groups (in Russian), Mat. Sb. (N.S) 110 (1976), 579--596.; English translation in Sb. Math. 38 (1981), 533--548.