September/October 2013 Multiple $\mathbb{S}^{1}$-orbits for the Schrödinger-Newton system
Silvia Cingolani, Simone Secchi
Differential Integral Equations 26(9/10): 867-884 (September/October 2013). DOI: 10.57262/die/1372858554

Abstract

We prove existence and multiplicity of symmetric solutions for the Schrödinger--Newton system in three-dimensional space using equivariant Morse theory.

Citation

Download Citation

Silvia Cingolani. Simone Secchi. "Multiple $\mathbb{S}^{1}$-orbits for the Schrödinger-Newton system." Differential Integral Equations 26 (9/10) 867 - 884, September/October 2013. https://doi.org/10.57262/die/1372858554

Information

Published: September/October 2013
First available in Project Euclid: 3 July 2013

zbMATH: 1299.35281
MathSciNet: MR3100069
Digital Object Identifier: 10.57262/die/1372858554

Subjects:
Primary: 35B06 , 35J20 , 35Q40 , 35Q55

Rights: Copyright © 2013 Khayyam Publishing, Inc.

Vol.26 • No. 9/10 • September/October 2013
Back to Top