Abstract
In this paper, we establish some results to show the existence and uniqueness of classical solution of the non-autonomous second-order integrodifferential equation of the type: \begin{eqnarray*} u''(t) & = & A(t)\;[u(t)+\int_0 ^{t} k_{1}(t,s)u(s)ds]'+B(t)\;[u(t)+\int_0 ^{t} k_{2}(t,s)u(s)ds]\\ & & +f(t),\; 0\leq t \leq T, \\ u(0) & = & u_{0} \in E,\quad u'(0)=u_{1} \in E, \end{eqnarray*} on a Banach space $E$, by means of the matrix operator method.
Citation
D. Bahuguna. D. N. Pandey. A. Ujlayan. "Second-order integrodifferential equation with nonautonomous operators." Differential Integral Equations 20 (6) 681 - 692, 2007. https://doi.org/10.57262/die/1356039432
Information