Abstract
We consider the Dirichlet problem $ (*)$ $-\Delta u = \mu u + f $ in $\Omega$, $u=0$ on $\partial \Omega$, with $\Omega$ either a bounded smooth convex domain in $\mathbb R^2$, or a ball or an annulus in $\mathbb R^N$. Let $\lambda_2$ be the second eigenvalue, with $\varphi_2$ an associated eigenfunction. Although the two nodal domains of $\varphi_2$ do not satisfy the interior ball condition, we are able to prove under suitable assumptions that, if $\mu$ is sufficiently close to $\lambda_2$, then the solution $u$ of $(*)$ also has two nodal domains which appear as small deformations of the nodal domains of $\varphi_2$. For $N=2$, use is made in the proof of several results relative to the Payne conjecture.
Citation
J. Fleckinger. J.-P. Gossez. F. de Thélin . "Maximum and antimaximum principles near the second eigenvalue." Differential Integral Equations 24 (3/4) 389 - 400, March/April 2011. https://doi.org/10.57262/die/1356019038
Information