Abstract
We extend previous work on injectivity in chemical reaction networks to general interaction networks. Matrix- and graph-theoretic conditions for injectivity of these systems are presented. A particular signed, directed, labelled, bipartite multigraph, termed the “DSR graph”, is shown to be a useful representation of an interaction network when discussing questions of injectivity. A graph-theoretic condition, developed previously in the context of chemical reaction networks, is shown to be sufficient to guarantee injectivity for a large class of systems. The graph-theoretic condition is simple to state and often easy to check. Examples are presented to illustrate the wide applicability of the theory developed.
Citation
Murad Banaji. Gheorghe Craciun. "Graph-theoretic approaches to injectivity and multiple equilibria in systems of interacting elements." Commun. Math. Sci. 7 (4) 867 - 900, December 2009.
Information