Communications in Mathematical Physics

Quantum field theory and the Jones polynomial

Edward Witten

Full-text: Open access

Article information

Source
Comm. Math. Phys. Volume 121, Number 3 (1989), 351-399.

Dates
First available in Project Euclid: 27 December 2004

Permanent link to this document
http://projecteuclid.org/euclid.cmp/1104178138

Mathematical Reviews number (MathSciNet)
MR0990772

Zentralblatt MATH identifier
0667.57005

Subjects
Primary: 57M25: Knots and links in $S^3$ {For higher dimensions, see 57Q45}
Secondary: 17B67: Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras 57N10: Topology of general 3-manifolds [See also 57Mxx] 58D15: Manifolds of mappings [See also 46T10, 54C35] 58D30: Applications (in quantum mechanics (Feynman path integrals), relativity, fluid dynamics, etc.) 81E40

Citation

Witten, Edward. Quantum field theory and the Jones polynomial. Comm. Math. Phys. 121 (1989), no. 3, 351--399. http://projecteuclid.org/euclid.cmp/1104178138.


Export citation