Abstract
We define the notion of ordinal computability by generalizing standard Turing computability on tapes of length ω to computations on tapes of arbitrary ordinal length. We show that a set of ordinals is ordinal computable from a finite set of ordinal parameters if and only if it is an element of Gödel's constructible universe L. This characterization can be used to prove the generalized continuum hypothesis in L.
Citation
Peter Koepke. "Turing computations on ordinals." Bull. Symbolic Logic 11 (3) 377 - 397, September 2005. https://doi.org/10.2178/bsl/1122038993
Information