Open Access
2015 Embeddings of Besov spaces on fractal $h$-sets
Antonio M. Caetano, Dorothee D. Haroske
Banach J. Math. Anal. 9(4): 259-295 (2015). DOI: 10.15352/bjma/09-4-14

Abstract

Let $\Gamma$ be a fractal $h$-set and ${\mathbb{B}}^{\sigma}_{p,q}(\Gamma)$ be a trace space of Besov type defined on $\Gamma$. While we dealt in our earlier papers with growth envelopes of such spaces mainly and investigated the existence of traces in detail, we now study continuous embeddings between different spaces of that type on $\Gamma$. We obtain necessary and sufficient conditions for such an embedding to hold, and can prove in some cases complete characterisations. It also includes the situation when the target space is of type $L_r(\Gamma)$ and, as a by-product, under mild assumptions on the $h$-set $\Gamma$ we obtain the exact conditions on $\sigma$, $p$ and $q$ for which the trace space ${\mathbb{B}}^{\sigma}_{p,q}(\Gamma)$ exists. We can also refine some embedding results for spaces of generalised smoothness on $\mathbb{R}^n$.

Citation

Download Citation

Antonio M. Caetano. Dorothee D. Haroske. "Embeddings of Besov spaces on fractal $h$-sets." Banach J. Math. Anal. 9 (4) 259 - 295, 2015. https://doi.org/10.15352/bjma/09-4-14

Information

Published: 2015
First available in Project Euclid: 17 April 2015

zbMATH: 1325.46038
MathSciNet: MR3336893
Digital Object Identifier: 10.15352/bjma/09-4-14

Subjects:
Primary: 46E35
Secondary: 28A80

Keywords: Besov space of generalised smoothness , ‎embedding‎ , Fractal $h$-set , Trace

Rights: Copyright © 2015 Tusi Mathematical Research Group

Vol.9 • No. 4 • 2015
Back to Top