Banach Journal of Mathematical Analysis

Composition operators between generally weighted Bloch spaces and $Q_{log}^q$ space

Haiying Li and Peide Liu

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Let $\varphi$ be a holomorphic self-map of the open unit disk $D$ on the complex plane and $p,\ q>0.$ In this paper, the boundedness and compactness of composition operator $C_{\varphi}$ from generally weighted Bloch space $B^{p}_{\log}$ to $Q^{q}_{\log}$ are investigated.

Article information

Source
Banach J. Math. Anal. Volume 3, Number 1 (2009), 99-110.

Dates
First available: 21 April 2009

Permanent link to this document
http://projecteuclid.org/euclid.bjma/1240336427

Mathematical Reviews number (MathSciNet)
MR2461750

Zentralblatt MATH identifier
1163.47019

Subjects
Primary:
Secondary: 47B38: Operators on function spaces (general) 47B33: Composition operators 32A36: Bergman spaces

Keywords
holomorphic self-map composition operator generally weighted Bloch space $Q^{q}_{\log}$

Citation

Li, Haiying; Liu, Peide. Composition operators between generally weighted Bloch spaces and $Q_{log}^q$ space. Banach Journal of Mathematical Analysis 3 (2009), no. 1, 99--110. http://projecteuclid.org/euclid.bjma/1240336427.


Export citation

References

  • K.R.M. Attele, Toeplitz and Hankel on Bergman one space , Hokaido, Math. J., 21 (1992), 279–293.
  • R. Aulaskari, J. Xiao and R. Zhao, On subspaces and subsets of BMOA and UBC, Analysis, 15 (1995), 101–121.
  • J. Cima and D. Stegenda, Hankel operators on $H^p$, in: Earl R. Berkson, N. T. Peck, J. Ulh(Eds.), Analysis at urbana 1, in: London Math. Soc. Lecture Note ser., Cambridge Univ. Press, Cambridge, 137 (1989), 133–150.
  • C.C. Cowen and B.D. MacCluer, Composition operators on spaces of analytic functions, CRC Press, Boca Roton, 1995.
  • P. Galanopoulos, On $B_\log$ to $Q_\log^p$ pullbacks, J. Math. Anal. Appl., 337(1) (2008), 712–725.
  • H. Li, P. Liu and M. Wang, Composition operators between generally weighted Bloch spaces of polydisk, J. Inequal. Pure Appl. Math., 8(3) (2007), Article85, 1–8.
  • K. Madigan and A. Matheson, Compact composition operators on the Bloch space, Trans. Amer. Math. Soc., 347 (1995), 2679–2687.
  • W. Ramey and D. Ulrich, Bounded mean oscillation of Bloch pull-backs, Math. Ann., 291 (1991), 591–606.
  • A. Siskakis and R. Zhao, A Volterra type operator on spaces on spaces of analytic functions, in: Contemp. Math., 232 (1999), 299–311.
  • J. Xiao, The $Q_p$ corona theorem, Pacific J. Math., 194 (2000), 491–509.
  • J. Xiao, Holomorphic $Q$ Classes, Lecture Notes in Math., Springer, >b<1767>/<, 2001.
  • J. Xiao, Geometric $Q_p$ functions, Front. Math., Birkh$\ddota$user, 2006.
  • R. Yoneda, The composition operators on the weighted Bloch space, Arch. Math., 78 ( 2002), 310–317.
  • R. Zhao, On logarithmic Carleson measures, Acta Sci. Math.(Szeged), 69(3-4) (2003), 605–618.
  • Kehe Zhu, Operator Theory on Function Spaces, New York, 1990.
  • Kehe Zhu, Spaces of Holomorphic functions in the unit ball, New York, 2005.