Banach Journal of Mathematical Analysis

Invertibility characterization of Wiener-Hopf plus Hankel operators via odd asymmetric factorizations

G. Bogveradze and L. P. Castro

Full-text: Open access

Abstract

The invertibility of Wiener-Hopf plus Hankel operators with essentially bounded Fourier symbols is characterized via certain factorization properties of the Fourier symbols. In addition, a Fredholm criterion for these operators is also obtained and the dimensions of the kernel and cokernel are described.

Article information

Source
Banach J. Math. Anal. Volume 3, Number 1 (2009), 1-18.

Dates
First available in Project Euclid: 21 April 2009

Permanent link to this document
http://projecteuclid.org/euclid.bjma/1240336418

Digital Object Identifier
doi:10.15352/bjma/1240336418

Mathematical Reviews number (MathSciNet)
MR2461742

Zentralblatt MATH identifier
05379944

Subjects
Primary: 47B35: Toeplitz operators, Hankel operators, Wiener-Hopf operators [See also 45P05, 47G10 for other integral operators; see also 32A25, 32M15]
Secondary: 47A68: Factorization theory (including Wiener-Hopf and spectral factorizations) 47A53: (Semi-) Fredholm operators; index theories [See also 58B15, 58J20]

Keywords
Wiener-Hopf operator Hankel operator invertibility Fredholm property odd asymmetric factorization

Citation

Bogveradze , G.; Castro , L. P. Invertibility characterization of Wiener-Hopf plus Hankel operators via odd asymmetric factorizations. Banach J. Math. Anal. 3 (2009), no. 1, 1--18. doi:10.15352/bjma/1240336418. http://projecteuclid.org/euclid.bjma/1240336418.


Export citation

References

  • E.L. Basor and T. Ehrhardt, On a class of Toeplitz $+$ Hankel operators, New York J. Math., 5 (1999), 1–16.
  • E.L. Basor and T. Ehrhardt, Factorization theory for a class of Toeplitz $+$ Hankel operators, J. Oper. Theory, 51 (2004), 411–433.
  • G. Bogveradze and L.P. Castro, Wiener–Hopf plus Hankel operators on the real line with unitary and sectorial symbols, Contemp. Math., 414 (2006), 77–85.
  • G. Bogveradze and L.P. Castro, On the Fredholm index of matrix Wiener–Hopf plus/minus Hankel operators with semi-almost periodic symbols, Operator Theory: Advances and Applications, 181 (2008), 143–-158.
  • G. Bogveradze and L.P. Castro, On the Fredholm property and index of Wiener–Hopf plus/minus Hankel operators with piecewise almost periodic symbols, Appl. Math. Inform. Mech., to appear.
  • A. Böttcher, Yu.I. Karlovich and I.M. Spitkovsky, Convolution Operators and Factorization of Almost Periodic Matrix Functions, Birkhäuser, Basel, 2002.
  • L.P. Castro, R. Duduchava and F.-O. Speck, Asymmetric factorizations of matrix functions on the real line, Operator Theory: Advances and Applications, 170 (2006), 53–74.
  • L.P. Castro, F.-O. Speck and F. S. Teixeira, A direct approach to convolution type operators with symmetry, Math. Nachr., 269-270 (2004), 73–85.
  • L.P. Castro, F.-O. Speck and F. S. Teixeira, Mixed boundary value problems for the Helmholtz equation in a quadrant, Integral Equations Oper. Theory, 56 (2006), 1–44.
  • V.G. Kravchenko, A.B. Lebre and J.S. Rodríguez, Factorization of singular integral operators with a Carlemen shift via factorization of matrix functions: The anticommutative case, Math. Nachr., 280 (2007), 1157–1175.
  • A.P. Nolasco, Regularity Properties of Wiener–Hopf-Hankel Operators, Ph.D. Thesis, University of Aveiro, 2007.
  • A.P. Nolasco and L.P. Castro, Factorization theory for Wiener–Hopf plus Hankel operators with almost periodic symbols, Contemp. Math., 414 (2006), 111–128.
  • A.P. Nolasco and L.P. Castro, A Duduchava–Saginashvili's type theory for Wiener–Hopf plus Hankel operators, J. Math. Anal. Appl., 331 (2007), 329–341.
  • F.-O. Speck:, General Wiener–Hopf Factorization Methods, Research Notes in Mathematics, 119, Pitman, London, 1985.