Open Access
November 2019 Networks of reinforced stochastic processes: Asymptotics for the empirical means
Giacomo Aletti, Irene Crimaldi, Andrea Ghiglietti
Bernoulli 25(4B): 3339-3378 (November 2019). DOI: 10.3150/18-BEJ1092

Abstract

This work deals with systems of interacting reinforced stochastic processes, where each process $X^{j}=(X_{n,j})_{n}$ is located at a vertex $j$ of a finite weighted direct graph, and it can be interpreted as the sequence of “actions” adopted by an agent $j$ of the network. The interaction among the evolving dynamics of these processes depends on the weighted adjacency matrix $W$ associated to the underlying graph: indeed, the probability that an agent $j$ chooses a certain action depends on its personal “inclination” $Z_{n,j}$ and on the inclinations $Z_{n,h}$, with $h\neq j$, of the other agents according to the elements of $W$.

Asymptotic results for the stochastic processes of the personal inclinations $Z^{j}=(Z_{n,j})_{n}$ have been subject of studies in recent papers (e.g., Aletti, Crimaldi and Ghiglietti [Ann. Appl. Probab. 27 (2017) 3787–3844], Crimaldi et al. [Synchronization and functional central limit theorems for interacting reinforced random walks (2019)]); while the asymptotic behavior of quantities based on the stochastic processes $X^{j}$ of the actions has never been studied yet. In this paper, we fill this gap by characterizing the asymptotic behavior of the empirical means $N_{n,j}=\sum_{k=1}^{n}X_{k,j}/n$, proving their almost sure synchronization and some central limit theorems in the sense of stable convergence. Moreover, we discuss some statistical applications of these convergence results concerning confidence intervals for the random limit toward which all the processes of the system almost surely converge and tools to make inference on the matrix $W$.

Citation

Download Citation

Giacomo Aletti. Irene Crimaldi. Andrea Ghiglietti. "Networks of reinforced stochastic processes: Asymptotics for the empirical means." Bernoulli 25 (4B) 3339 - 3378, November 2019. https://doi.org/10.3150/18-BEJ1092

Information

Received: 1 May 2017; Revised: 1 May 2018; Published: November 2019
First available in Project Euclid: 25 September 2019

zbMATH: 07110140
MathSciNet: MR4010957
Digital Object Identifier: 10.3150/18-BEJ1092

Keywords: asymptotic normality , complex networks , Interacting systems , reinforced stochastic processes , synchronization , urn models

Rights: Copyright © 2019 Bernoulli Society for Mathematical Statistics and Probability

Vol.25 • No. 4B • November 2019
Back to Top