Abstract
The extremal coefficient function (ECF) of a max-stable process $X$ on some index set $T$ assigns to each finite subset $A\subset T$ the effective number of independent random variables among the collection $\{X_{t}\}_{t\in A}$. We introduce the class of Tawn–Molchanov processes that is in a 1:1 correspondence with the class of ECFs, thus also proving a complete characterization of the ECF in terms of negative definiteness. The corresponding Tawn–Molchanov process turns out to be exceptional among all max-stable processes sharing the same ECF in that its dependency set is maximal w.r.t. inclusion. This entails sharp lower bounds for the finite dimensional distributions of arbitrary max-stable processes in terms of its ECF. A spectral representation of the Tawn–Molchanov process and stochastic continuity are discussed. We also show how to build new valid ECFs from given ECFs by means of Bernstein functions.
Citation
Kirstin Strokorb. Martin Schlather. "An exceptional max-stable process fully parameterized by its extremal coefficients." Bernoulli 21 (1) 276 - 302, February 2015. https://doi.org/10.3150/13-BEJ567
Information