Open Access
May 2014 Universal Gaussian fluctuations on the discrete Poisson chaos
Giovanni Peccati, Cengbo Zheng
Bernoulli 20(2): 697-715 (May 2014). DOI: 10.3150/12-BEJ503

Abstract

We prove that homogeneous sums inside a fixed discrete Poisson chaos are universal with respect to normal approximations. This result parallels some recent findings, in a Gaussian context, by Nourdin, Peccati and Reinert (Ann. Probab. 38 (2010) 1947–1985). As a by-product of our analysis, we provide some refinements of the CLTs for random variables on the Poisson space proved by Peccati, Solé, Taqqu and Utzet (Ann. Probab. 38 (2010) 443–478) and by Peccati and Zheng (Electron. J. Probab. 15 (2010) 1487–1527).

Citation

Download Citation

Giovanni Peccati. Cengbo Zheng. "Universal Gaussian fluctuations on the discrete Poisson chaos." Bernoulli 20 (2) 697 - 715, May 2014. https://doi.org/10.3150/12-BEJ503

Information

Published: May 2014
First available in Project Euclid: 28 February 2014

zbMATH: 1302.60059
MathSciNet: MR3178515
Digital Object Identifier: 10.3150/12-BEJ503

Keywords: central limit theorems , contractions , discrete Poisson chaos , Universality

Rights: Copyright © 2014 Bernoulli Society for Mathematical Statistics and Probability

Vol.20 • No. 2 • May 2014
Back to Top