Open Access
may 2015 Invariant means for the wobbling group
Kate Juschenko, Mikael de la Salle
Bull. Belg. Math. Soc. Simon Stevin 22(2): 281-290 (may 2015). DOI: 10.36045/bbms/1432840864

Abstract

Given a metric space $(X,d)$, the wobbling group of $X$ is the group of bijections $g:X\rightarrow X$ satisfying $\sup\limits_{x\in X} d(g(x),x)<\infty$. We study algebraic and analytic properties of $W(X)$ in relation with the metric space structure of $X$, such as amenability of the action of the lamplighter group $ \bigoplus_{X} \Z/2\Z \rtimes W(X)$ on $\bigoplus_{X} \Z/2\Z$ and property~(T).

Citation

Download Citation

Kate Juschenko. Mikael de la Salle. "Invariant means for the wobbling group." Bull. Belg. Math. Soc. Simon Stevin 22 (2) 281 - 290, may 2015. https://doi.org/10.36045/bbms/1432840864

Information

Published: may 2015
First available in Project Euclid: 28 May 2015

zbMATH: 1322.43001
MathSciNet: MR3351042
Digital Object Identifier: 10.36045/bbms/1432840864

Subjects:
Primary: 20E22 , 20F65 , ‎43A07‎

Keywords: amenable actions , property (T) , Random walks , wobblings

Rights: Copyright © 2015 The Belgian Mathematical Society

Vol.22 • No. 2 • may 2015
Back to Top