Abstract
Given a metric space $(X,d)$, the wobbling group of $X$ is the group of bijections $g:X\rightarrow X$ satisfying $\sup\limits_{x\in X} d(g(x),x)<\infty$. We study algebraic and analytic properties of $W(X)$ in relation with the metric space structure of $X$, such as amenability of the action of the lamplighter group $ \bigoplus_{X} \Z/2\Z \rtimes W(X)$ on $\bigoplus_{X} \Z/2\Z$ and property~(T).
Citation
Kate Juschenko. Mikael de la Salle. "Invariant means for the wobbling group." Bull. Belg. Math. Soc. Simon Stevin 22 (2) 281 - 290, may 2015. https://doi.org/10.36045/bbms/1432840864
Information