Open Access
february 2013 Chebyshev Upper Estimates for Beurling's Generalized Prime Numbers
Jasson Vindas
Bull. Belg. Math. Soc. Simon Stevin 20(1): 175-180 (february 2013). DOI: 10.36045/bbms/1366306723

Abstract

Let $N$ be the counting function of a Beurling generalized number system and let $\pi$ be the counting function of its primes. We show that the $L^{1}$-condition $$ \int_{1}^{\infty}\left|\frac{N(x)-ax}{x}\right|\frac{\mathrm{d}x}{x}<\infty $$ and the asymptotic behavior $$N(x)=ax+O\left(\frac{x}{\log x}\right)\: ,$$ for some $a>0$, suffice for a Chebyshev upper estimate $$ \frac{\pi(x)\log x}{x}\leq B<\infty\: .$$

Citation

Download Citation

Jasson Vindas. "Chebyshev Upper Estimates for Beurling's Generalized Prime Numbers." Bull. Belg. Math. Soc. Simon Stevin 20 (1) 175 - 180, february 2013. https://doi.org/10.36045/bbms/1366306723

Information

Published: february 2013
First available in Project Euclid: 18 April 2013

zbMATH: 1280.11059
MathSciNet: MR3082752
Digital Object Identifier: 10.36045/bbms/1366306723

Subjects:
Primary: 11N80
Secondary: 11M41 , 11N05

Keywords: Beurling generalized primes , Chebyshev upper estimates

Rights: Copyright © 2013 The Belgian Mathematical Society

Vol.20 • No. 1 • february 2013
Back to Top