Abstract
Let G be a finite Dini-smooth domain and be the conformal mapping of G onto D(0,r0):={w:∣w∣<r0} with the normalization φ0(z0)=0, φ′0(z0)=1, where z0∈G. We investigate the approximation properties of the Bieberbach polynomials πn(z), n=1,2,3,⋯ for the pair (G,z0) and estimate the error ∥φ0−πn∥¯G:=max{∣φ0(z)−πn(z)∣:z∈¯G} in accordance with the geometric parameters of ¯G.
Citation
Daniyal M. Israfilov. Burcin Oktay. "Approximation properties of the Bieberbach polynomials in closed Dini-smooth domains." Bull. Belg. Math. Soc. Simon Stevin 13 (1) 91 - 99, March 2006. https://doi.org/10.36045/bbms/1148059335
Information