Loading [MathJax]/jax/output/CommonHTML/jax.js
Open Access
March 2006 Approximation properties of the Bieberbach polynomials in closed Dini-smooth domains
Daniyal M. Israfilov, Burcin Oktay
Bull. Belg. Math. Soc. Simon Stevin 13(1): 91-99 (March 2006). DOI: 10.36045/bbms/1148059335

Abstract

Let G be a finite Dini-smooth domain and be the conformal mapping of G onto D(0,r0):={w:∣w∣<r0} with the normalization φ0(z0)=0, φ0(z0)=1, where z0G. We investigate the approximation properties of the Bieberbach polynomials πn(z), n=1,2,3, for the pair (G,z0) and estimate the error φ0πn¯G:=max{φ0(z)πn(z)∣:z¯G} in accordance with the geometric parameters of ¯G.

Citation

Download Citation

Daniyal M. Israfilov. Burcin Oktay. "Approximation properties of the Bieberbach polynomials in closed Dini-smooth domains." Bull. Belg. Math. Soc. Simon Stevin 13 (1) 91 - 99, March 2006. https://doi.org/10.36045/bbms/1148059335

Information

Published: March 2006
First available in Project Euclid: 19 May 2006

zbMATH: 1124.30013
MathSciNet: MR2245981
Digital Object Identifier: 10.36045/bbms/1148059335

Subjects:
Primary: 30C40 , 30E10 , 41A10

Keywords: Bieberbach polynomials , conformal mapping , Dini-smooth domains , Lyapunov curves

Rights: Copyright © 2006 The Belgian Mathematical Society

Vol.13 • No. 1 • March 2006
Back to Top