Bulletin (New Series) of the American Mathematical Society

Review: Masaki Kashiwara, Takahiro Kawai, and Tatsuo Kimura, Foundations of algebraic analysis

J. L. Brylinsky

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. (N.S.) Volume 18, Number 1 (1988), 104-108.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
http://projecteuclid.org/euclid.bams/1183554451

Citation

Brylinsky, J. L. Review: Masaki Kashiwara, Takahiro Kawai, and Tatsuo Kimura, Foundations of algebraic analysis . Bull. Amer. Math. Soc. (N.S.) 18 (1988), no. 1, 104--108. http://projecteuclid.org/euclid.bams/1183554451.


Export citation

References

  • 1. I. N. Bernstein, Modules over a ring of differential operators, An investigation of the fundamental solutions of equations with constant coefficients, Funktsional. Anal. i Prilozhen. 5 (1971), 89-101.
  • 2. I. N. Bernstein, The analytic continuation of generalized functions with respect to a parameter, Funktsional. Anal. i Prilozhen 6 (1972), 26-40.
  • 3. J. E. Björk, Rings of differential operators, North-Holland, 1980.
  • 4. L. Boutet de Monvel and P. Kree, Pseudo-differential operators and Gevrey classes, Ann. Inst. Fourier (Grenoble) 17 (1967), 295-323.
  • 5. I. M. Gel'fand and G. E. Shilov, Generalized functions. Vol. 1, Properties and operations, Academic Press, 1964 (reprinted by Harcourt Brace Jovanovich, 1977).
  • 6. V. Guillemin, M. Kashiwara and T. Kawai, Seminar on microlocal analysis, Ann. of Math. Studies, no. 93, Princeton Univ. Press, 1980.
  • 7. V. Guillemin and S. Sternberg, Geometric asymptotics, Math. Surveys, no. 14, Amer. Math. Soc., Providence, R. I., 1977.
  • 8. M. Kashiwara, On the holonomic systems of differential equations. II, Invent. Math. 49 (1978), 121-135.
  • 9. M. Kashiwara, Systems of microdifferential equations, Progress in Math., vol. 34, Birkhäuser, 1983.
  • 10. M. Kashiwara, B-functions and holonomic systems, Invent. Math. 38 (1976), 33-58.
  • 11. M. Kashiwara and T. Kawai, On the holonomic systems of linear differential equations (systems with regular singularities). III, Publ. R. I. M. S. Kyoto Univ. 17 (1981), 813-979.
  • 12. Le Dung Trang and Z. Mebkhout, Introduction to linear differential equations, Singularities, Part 2, Proc. Sympos. Pure Math., vol. 40, Amer. Math. Soc., Providence, R. I., 1983, pp. 31-63.
  • 13. B. Malgrange, L'involutivité des variétés caractéristiques des systèmes différentiels et microdifférentiels, Séminaire Bourbaki (1977/78) Exp. No. 522; Lecture Notes in Math., vol. 710, Springer-Verlag, Berlin and New York, 1979, pp. 277-289.
  • 14. B. Malgrange, Polynômes de Bernstein-Sato et cohomologie évanescente, Astérisque 101-102 (1983).
  • 15. A. Martineau, Les hyperfonctions de M. Sato, Séminaire Bourbaki 214 (1961-62), mimeographed, I.H.P., Paris.
  • 16. Z. Mebkhout, Une autre équivalence de catégories, Compositio Math. 51 (1984), 63-88.
  • 17. T. Oda, Introduction to algebraic analysis of complex manifolds, Adv. Study Pure Math., no. 1, North-Holland, 1983.
  • 18. M. Sato, M. Kashiwara and T. Kawai, Microfunctions and pseudodifferential equations, Lecture Notes in Math., vol. 287, Springer-Verlag, Berlin and New York, 1973, pp. 264-529.
  • 19. P. Schapira, Microdifferential systems in the complex domain, Grundlehren Math. Wiss., Springer-Verlag, Berlin and New York, 1985.
  • 20. T. Yano, b-functions and exponents of hypersurface isolated singularities, Singularities, Part 2, Proc. Sympos. Pure Math., vol. 40, Amer. Math. Soc., Providence, R. I., 1983, pp. 641-652.