Bulletin (New Series) of the American Mathematical Society

Review: Gerhard P. Hochschild, Basic theory of algebraic groups and Lie algebras, and T. A. Springer, Linear algebraic groups

Brian Parshall

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. (N.S.) Volume 9, Number 3 (1983), 364-368.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
http://projecteuclid.org/euclid.bams/1183551302

Citation

Parshall, Brian. Review: Gerhard P. Hochschild, Basic theory of algebraic groups and Lie algebras , and T. A. Springer, Linear algebraic groups . Bulletin (New Series) of the American Mathematical Society 9 (1983), no. 3, 364--368. http://projecteuclid.org/euclid.bams/1183551302.


Export citation

References

  • 1. A. Borel, Groupes linéaires algébriques, Ann. of Math. (2) 64 (1956), 20-80.
  • 2. A. Borel, Linear algebraic groups, Benjamin, New York, 1969.
  • 3. A. Borel, On the development of Lie group theory, Math. Intelligencer 2 (1980), 67-72.
  • 4. R. Carter, Simple groups of Lie type, Wiley, London and New York, 1972.
  • 5. C. Chevalley, Séminaire sur la classification des groupes de Lie algébriques, École Norm. Sup., Paris, 1956-1958.
  • 6. C. Chevalley, Sur certains groupes simples, Tôhoku Math. J. 7 (1955), 14-66.
  • 7. C. Chevalley, Théorie des groupes de Lie. Tome II, Groupes algébriques (1951); Tome III, Théorèmes généraux sur les algèbres de Lie. (1955), Hermann, Paris.
  • 8. M. Demazure and A. Grothendieck, Schémas en groupes, Lecture Notes in Math., vols. 151, 152, 155, Springer-Verlag, Berlin and New York, 1970.
  • 9. I. Frenkel and V. Kac, Basic representations of affine Lie algebras and dual resonance models, Invent. Math. 62 (1980), 23-66.
  • 10. G. Hochschild, Algebraic Lie algebras and representative functions, Illinois J. Math. 3 (1959), 499-523; supplement, ibid. 4 (1960), 609-618.
  • 11. G. Hochschild, The structure of Lie groups, Holden-Day, San Francisco, 1965.
  • 12. J. Humphreys, Linear algebraic groups, Springer-Verlag, Berlin and New York, 1975.
  • 13. E. Kolchin, Algebraic matrix groups and the Picard-Vessiot theory of homogeneous linear ordinary differential equations, Ann. of Math. (2) 49 (1948), 1-42.
  • 14. G. Mostow, Fully reducible subgroups of algebraic groups, Amer. J. Math. 78 (1956), 200-221.