Bulletin (New Series) of the American Mathematical Society

The meaning of Maslov's asymptotic method: The need of Planck's constant in mathematics

Jean Leray

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. (N.S.) Volume 5, Number 1 (1981), 15-27.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
http://projecteuclid.org/euclid.bams/1183548218

Mathematical Reviews number (MathSciNet)
MR614311

Zentralblatt MATH identifier
0463.35075

Subjects
Primary: 47B99: None of the above, but in this section 81C99
Secondary: 35S99: None of the above, but in this section 42B99: None of the above, but in this section

Citation

Leray, Jean. The meaning of Maslov's asymptotic method: The need of Planck's constant in mathematics. Bulletin (New Series) of the American Mathematical Society 5 (1981), no. 1, 15--27. http://projecteuclid.org/euclid.bams/1183548218.


Export citation

References

  • 1. V. I. Arnold, On a characteristic class intervening in quantum conditions, Functional Anal. Appl. 1 (1967), 1-14. (Russian with English transl.)
  • 2. V. C. Buslaev, Quantization and the W. K. B. method, Trudy Mat. Inst. Steklov 110 (1970), 5-28. (Russian)
  • 3. V. P. Maslov, Perturbation theory and asymptotic methods, M. G. U., Moscow, 1965. (Russian)
  • 4. H. Poincaré, Sur les intégrales irrégulières des équations linéaires, Acta Math. 8 (1886), 295-344.
  • 5. I. E. Segal, Foundations of the theory of dynamical systems of infinitely many degrees of freedom. I, Mat-Fys. Medd. Danske Vid. Selsk. 31 (1959), 1-39.
  • 6. J. Leray, Analyse lagrangienne et mécanique quantique, Séminaire du Collège de France 1976-1977; R. C. P. 25, Strasbourg, 1978.