Bulletin (New Series) of the American Mathematical Society

The fundamental theorem of algebra and complexity theory

Steve Smale

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. (N.S.) Volume 4, Number 1 (1981), 1-36.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
http://projecteuclid.org/euclid.bams/1183547848

Mathematical Reviews number (MathSciNet)
MR590817

Zentralblatt MATH identifier
0456.12012

Subjects
Primary: 00-02: Research exposition (monographs, survey articles) 12D10: Polynomials: location of zeros (algebraic theorems) {For the analytic theory, see 26C10, 30C15} 68C25 65H05: Single equations 58-02: Research exposition (monographs, survey articles)
Secondary: 01A05: General histories, source books 30D10: Representations of entire functions by series and integrals

Citation

Smale, Steve. The fundamental theorem of algebra and complexity theory. Bull. Amer. Math. Soc. (N.S.) 4 (1981), no. 1, 1--36. http://projecteuclid.org/euclid.bams/1183547848.


Export citation

References

  • B. Barna, 1956, Über die Divergenzpunkte des Newtonsches Verfahrens zur Bestimmung von Wurzeln Algebraischen Gleichungen. II, Publicatione Mathematicae, Debrecen, vol. 4, pp. 384-397.
  • L. E. J. Brouwer, 1924 (w. B. de Loor), Intuitionischer Beweis des Fundamentalsatzes der Algebra, Coll. Works, vol. 1 (1975), North-Holland, Amsterdam.
  • G. Collins, 1977, Infallible calculation of polynomials to specified precision in mathematical software. III, Academic Press, New York.
  • G. Debreu, 1959, Theory of value, Yale Univ. Press, New Haven, Conn.
  • B. Dejon and P. Henrici, 1969, Constructive aspects of the fundamental theorem of algebra, Wiley, New York.
  • C. Eaves and H. Scarf, 1976, The solution of systems of piecewise linear equations, Math. Operations Res., vol. 1, pp. 1-27.
  • H. Eves, 1976, An introduction to the history of mathematics (4th ed.), Holt, Rinehart and Winston, New York.
  • M. Garey and D. Johnson, 1979, Computers and intractability, Freeman, San Francisco.
  • C. F. Gauss, 1973, Werke, Band X, Georg Olms Verlag, New York.
  • P. Griffiths, 1978, Complex differential and integral geometry and curvature integrals associated to singularities of complex analytic varieties, Duke Math. J. 45, pp. 427-512.
  • J. Hartmanis, 1979, Observations about the development of theoretical computer science, 20th Annual Sympos. on Foundations of Computer Science, IEEE, Long Beach, Calif.
  • W. Hayman, 1958, Multivalent functions, Cambridge Univ. Press, Cambridge, England.
  • P. Henrici, 1977, Applied and computational complex analysis, Wiley, New York.
  • E. Hille, 1962, Analytic function theory. II, Ginn, Boston.
  • M. Hirsch, 1963, A proof of the non-retractability of a cell onto its boundary, Proc. Amer. Math. Soc. 14, pp. 364-365.
  • M. Hirsch and S. Smale, 1979, On algorithms for solving f(x) = 0, Comm. Pure Appl. Math. 32, pp. 281-312.
  • D. Hoffman and R. Osserman, (to appear) The geometry of the generalized Gauss map.
  • H. Hotelling, 1939, Tubes and spheres in n-space and a class of statistical problems, Amer. J. Math. 61, pp. 440-460.
  • W. Hurewicz, 1958, Lectures on ordinary differential equations, MIT Press, Cambridge, Mass.
  • J. Jenkins, 1965, Univalent functions and conformal mapping, Springer, New York.
  • R. Kellog, T. Li and J. Yorke, 1976, A constructive proof of the Brouwer fixed point theorem and computational results, SIAM J. Numer. Anal. 13, pp. 473-483.
  • I. Lakatos, 1976, Proofs and refutations, Cambridge Univ. Press, Cambridge, England.
  • S. Lang, 1965, Algebra, Addison-Wesley, Reading, Mass.
  • M. Marden, 1966, Geometry of polynomials, Math. Surveys, no. 3, Amer Math. Soc., Providence, R. I.
  • A. Ostrowski, 1973, Solutions of equations in Euclidean and Banach spaces, Academic Press, New York.
  • Jean-Claude Pont, 1974, La topologie algébrique, des origine à Poincaré, Presses Universitaires de France, Paris.
  • L. Santalo, 1976, Integral geometry and geometric probability, Addison-Wesley, Reading, Mass.
  • H. Scarf, 1973, The computation of economic equilibria (in collaboration with T. Hansen) Yale Univ. Press, New Haven, Conn.
  • G. Schober, (to appear), Coefficient estimates for inverses of Schlicht functions, Proc. of NATO-LMS Conference on Aspects of Contemporary Complex Analysis, Academic Press, New York.
  • S. Smale, 1974, Sufficient conditions for an optimum, Dynamical Systems-Warwick 1974, Lecture Notes in Math., vol. 468, Springer-Verlag, Berlin and New York.
  • S. Smale, 1976, A convergent process of price adjustment and global Newton methods, J. Math. Econom., 3, pp. 107-120.
  • S. Smale, (to appear), Global analysis and economics, Handbook of Mathematical Economics (Arrow and Intrilligator, eds.), North-Holland, Amsterdam.
  • D. Smith, 1953, History of mathematics, vol. II, Dover, New York.
  • D. Struik, 1969, A source book in mathematics, 1200-800, Harvard Univ. Press, Cambridge, Mass.
  • J. Traub, ed., 1976, Analytic computational complexity, Academic Press, New York.
  • B. Van der Waerden, 1953, Modern algebra, Vol. I, Ungar, New York.
  • B. Van der Waerden, 1950, Modern algebra, Vol. II, Ungar, New York.
  • Y.-H. Wan, 1975, On local Pareto optima, J. Math. Econom., 2, pp. 35-42.
  • H. Weyl, 1924, Randbemerkingen zu Hauptproblem der Mathematik, Math. Z. 20, pp. 131-150.
  • H. Weyl, 1939, On the volume of tubes, Amer. J. Math. 61, pp. 461-472.
  • H. Whitney, 1972, Complex analytic varieties, Addison-Wesley, Reading, Mass.
  • J. H. Wilkinson, 1963, Rounding errors in algebraic processes, Prentice-Hall, Englewood Cliffs, N.J.
  • P. Wolfe, 1980, The ellipsoid algorithm (letter to the editor), Science, 208, pp. 240-242.