Bulletin of the American Mathematical Society

Review: H. H. Halberstam and H.-E. Richert, Sieve methods

H. L. Montgomery

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. Volume 82, Number 6 (1976), 846-853.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
http://projecteuclid.org/euclid.bams/1183538334

Citation

Montgomery, H. L. Review: H. H. Halberstam and H.-E. Richert, Sieve methods . Bull. Amer. Math. Soc. 82 (1976), no. 6, 846--853. http://projecteuclid.org/euclid.bams/1183538334.


Export citation

References

  • 1. E. Bombieri, Le grand crible dans la théorie analytique des nombres, Astérisque No. 18, Société Mathématique de France, Paris, 1974. MR 51 #8057.
  • 2. E. Bombieri, On twin almost primes, Acta Arith. 28 (1975), 177-193; corrigendum, ibid., 28 (1976), 760-763.
  • 3. E. Bombieri, The asymptotic sieve (to appear).
  • 4. J. Chen, On the representation of a large even integer as the sum of a prime and a product of two primes, Sci. Sinica 16 (1973), 157-176.
  • 5. P. X. Gallagher, A larger sieve, Acta Arith. 18 (1971), 77-81. MR 45 #214.
  • 6. H. Halberstam and K. F. Roth, Sequences. I, Clarendon Press, Oxford, 1966. MR 35 #1565.
  • 7. C. Hooley, Applications of sieve methods to the theory of numbers, Cambridge Tracts in Math., no. 70, Cambridge Univ. Press, London and New York, 1976.
  • 8. H. Iwaniec, On the error term in the linear sieve, Acta Arith. 19 (1971), 1-30. MR 45 #5104.
  • 9. H. Iwaniec, The half dimensional sieve, Acta Arith. 29 (1976), 69-95.
  • 10. H. L. Montgomery and R. C. Vaughan, The large sieve, Mathematika 20 (1973), 119-134.
  • 11. J. W. Porter, An improvement of the upper and lower bound functions of Ankeny and Onishi, Acta Arith. (to appear).
  • 12. P. M. Ross, On Chen's theorem that each large even number has the form p1 + p2 or P1 + P2P3, J. London Math. Soc. (2) 10 (1975), 500-506.
  • 13. A. Selberg, Sieve methods, Proc. Sympos. Pure Math., vol 20, Amer. Math. Soc., Providence, R. I., 1971, pp. 311-351. MR 47 #3286.
  • 14. A. Selberg, Remarks on sieves, Proc. Number Theory Conf. (Boulder, Colo., 1972), Univ. of Colorado, 1972, pp. 205-216. MR 50 #4457.
  • 15. R. C. Vaughan, Mean value theorems in prime number theory, J. London Math. Soc. (2) 10 (1975), 153-162.