Bulletin of the American Mathematical Society

Topology and logic as a source of algebra

Saunders Mac Lane

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. Volume 82, Number 1 (1976), 1-40.

Dates
First available: 4 July 2007

Permanent link to this document
http://projecteuclid.org/euclid.bams/1183537593

Mathematical Reviews number (MathSciNet)
MR0414648

Zentralblatt MATH identifier
0324.55001

Subjects
Primary: 18-02: Research exposition (monographs, survey articles) 12-02: Research exposition (monographs, survey articles) 55-02: Research exposition (monographs, survey articles) 02-02 00-xx

Citation

Mac Lane, Saunders. Topology and logic as a source of algebra. Bulletin of the American Mathematical Society 82 (1976), no. 1, 1--40. http://projecteuclid.org/euclid.bams/1183537593.


Export citation

References

  • 1. Richard F. Arens, Operations induced in conjugate spaces, Proc. Internat. Congr. of Math. (Cambridge, Mass., 1950), vol. I, Amer. Math. Soc., Providence, R.I., 1952, pp. 532-533.
  • 2. Richard F. Arens, The adjoint of a bilinear operator, Proc. Amer. Math. Soc. 2 (1951), 839-848. MR 13, 659.
  • 3. Richard F. Arens, Operations induced in function classes, Monatsh. Math. 55 (1951), 1-19. MR 13, 372.
  • 4. M. Artin, A. Grothendieck and J. L. Verdier, La théorie des topos et cohomologie étale des schémas (SGA 4), vols. I, II, III, (Séminaire de géométrie algébrique du Bois-Marie 1963/64), Lecture Notes in Math., vols. 269, 270, 305, Springer-Verlag, Berlin, Heidelberg and New York, 1972, 1973.
  • 5. R. Baer, Erweiterung von Gruppen und ihren Isomorphismen, Math. Z. 38 (1934), 375-416.
  • 6. Michael Barr, Cohomology and obstructions: Commutative algebras, Seminar on Triples and Categorical Homology Theory (ETH, Zürich, 1966/67), Lecture Notes in Math., vol. 80, Springer-Verlag, Berlin, Heidelberg and New York, 1969, pp. 357-373. MR 42 #6075.
  • 7. H. Bass, Algebraic K-theory, Benjamin, New York and Amsterdam, 1968. MR 40 #2736.
  • 8. N. Bourbaki, Éléments de mathématique. XL Part I: Les structures fondamentales de l'analyse. Livre II: Algèbre, Chap. 5: Corps commutatifs, Actualités Sci. Indust., no. 1102, Hermann, Paris, 1950. MR 12, 6.
  • 9. H. Cartan, Séminaire Henri Cartan de l'École Normale Supérieure, 1954/1955, Algèbres d'Eilenberg-Mac Lane et homotopie, Secrétariat mathématique, Paris, 1955. MR 19, 438.
  • 10. H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, N.J., 1956. MR 17, 1040.
  • 11. E. Čech, Les groupes de Betti d'un complex infinie, Fund. Math. 25 (1935), 33-44.
  • 12. G. J. Decker, The integral homology algebra of an Eilenberg-Mac Lane space, Thesis, Univ. of Chicago, Chicago, 1974.
  • 13. J. Duskin, K(Π,n)-torsors and the interpretation of "triple" cohomology, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2554-2557. MR 49 #5139.
  • 14. J. Duskin, Simplicial methods and the interpretation of "triple" cohomology, Mem. Amer. Math. Soc. No. 163 (to appear).
  • 15. E. Dyer and R. K. Lashof, Homology of iterated loop spaces, Amer. J. Math. 84 (1962), 35-88. MR 25 #4523.
  • 16. B. Eckmann, Der Cohomologie-Ring einer beliebigen Gruppe, Comment. Math. Helv. 18 (1946), 232-282. MR 8, 166.
  • 17. S. Eilenberg, Singular homology theory, Ann. of Math. (2) 45 (1944), 407-447. MR 6, 96.
  • 18. S. Eilenberg, Automata, languages, and machines. Vol. A, Academic Press, New York, 1974.
  • 19. S. Eilenberg and G. M. Kelly, A generalization of the functorial calculus, J. Algebra 3 (1966), 366-375. MR 32 #7618.
  • 20. S. Eilenberg and S. Mac Lane, Group extensions and homology, Ann. of Math. (2) 43 (1942), 757-831. MR 4, 88.
  • 21. S. Eilenberg and S. Mac Lane, Natural isomorphisms in group theory, Proc. Nat. Acad. Sci. U.S.A. 28 (1942), 537-543. MR 4, 134.
  • 22. S. Eilenberg and S. Mac Lane, Relations between homology and homotopy groups, Proc. Nat. Acad. Sci. U.S.A. 29 (1943), 155-158. MR 4, 224.
  • 23. S. Eilenberg and S. Mac Lane, General theory of natural equivalences, Trans. Amer. Math. Soc. 58 (1945), 231-294. MR 7, 109.
  • 24. S. Eilenberg and S. Mac Lane, Relations between homology and homotopy groups of spaces, Ann. of Math. (2) 46 (1945), 480-509. MR 7, 137.
  • 25. S. Eilenberg and S. Mac Lane, Homology of spaces with operators. II, Trans. Amer. Math. Soc. 65 (1949), 49-99. MR 11, 379.
  • 26. S. Eilenberg and S. Mac Lane, Relations between homology and homotopy groups of spaces. II, Ann. of Math. (2) 51 (1950), 514-533. MR 11, 735.
  • 27. S. Eilenberg and S. Mac Lane, Acyclic models, Amer. J. Math. 75 (1953), 189-199. MR 14, 670.
  • 28. S. Eilenberg and S. Mac Lane, On the groups H(Π,n). I, Ann. of Math. (2) 58 (1953), 55-106. MR 15, 54.
  • 29. S. Eilenberg and S. Mac Lane, On the groups H(Π,n). II. Methods of computation, Ann. of Math. (2) 60 (1954), 49-139. MR 16, 391.
  • 30. S. Eilenberg and S. Mac Lane, On the groups H(Π,n). III. Operations and obstructions, Ann. of Math. (2) 60 (1954), 513-557. MR 16, 392.
  • 31. S. Eilenberg and J. A. Zilber, Semi-simplicial complexes and singular homology, Ann. of Math. (2) 51 (1950), 499-513. MR 11, 734.
  • 32. C. Elgot, Monadic computation and iterative algebraic theories, Proc. Logic Colloquium (Bristol, 1973) edited by H. E. Rose and J. C. Shepherdson, North-Holland Publishing Co., Amsterdam. Oxford 1975, pp. 175-230.
  • 33. D. B. A. Epstein, Functors between tensored categories, Invent. Math. 1 (1966), 221-228. MR 35 #4276.
  • 33a. H. Freudenthal, Der Einfluss der Fundamentalgruppe auf die Bettischen Gruppen, Ann. of Math. (2) 47 (1946), 274-316. MR 8, 166.
  • 34. P. Freyd, Abelian categories. An introduction to the theory of functors, Harper's Ser. in Modern Math., Harper & Row, New York, 1964. MR 29 #3517.
  • 35. P. Freyd, Aspects of topoi, Bull. Austral. Math. Soc. 7 (1972), 1-76.
  • 36. P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35, Springer-Verlag, Berlin, Heidelberg and New York, 1967. MR 35 #1019.
  • 37. G. Gentzen, Untersuchungen über das logische Schliessen. I, II, Math. Z. 39 (1934), 176-210, 405-431.
  • 38. M. Gerstenhaber, On the deformation of rings and algebras. II, Ann. of Math. (2) 84 (1966), 1-19. MR 34 #7608.
  • 39. S. J. Goldberg, Extension of Lie algebras and the third cohomology group, Canad. J. Math. 5 (1953), 470-476. MR 15, 282.
  • 40. M. Hakim, Topos annelés et schémas relatifs, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 64, Springer-Verlag, Berlin and New York, 1972.
  • 41. R. Hamsher, Eilenberg-Mac Lane algebras and their computation, Thesis, Univ. of Chicago, Chicago, Ill., 1973.
  • 42. G. Hochschild, Cohomology classes of finite type and finite dimensional kernels for Lie algebras, Amer. J. Math. 76 (1954), 763-778. MR 16, 443.
  • 43. G. Hochschild, Lie algebra kernels and cohomology, Amer. J. Math. 76 (1954), 698-716. MR 16, 109.
  • 44. H. Hopf, Fundamentalgruppe und zweite Bettische Gruppe, Comment. Math. Helv. 14 (1942), 257-309. MR 3, 316.
  • 45. H. Hopf, Relations between the fundamental group and the second Betti group, Lectures in Topology, Univ. of Michigan Press, Ann Arbor, Mich., 1941, pp. 315-316. MR 3, 135.
  • 46. H. Hopf, Nachtrag zu der Arbeit Fundamentalgruppe und zweite Bettische Gruppe, Comment. Math. Helv. 15 (1943), 27-32. MR 4, 173.
  • 47. H. Hopf, Über die Bettischen Gruppen, die zu einer beliebigen Gruppe gehören, Comment. Math. Helv. 17 (1945), 39-79, MR 6, 279.
  • 48. D. M. Kan, Adjoint functors, Trans. Amer. Math. Soc. 87 (1958), 294-329. MR 24 #A1301.
  • 49. D. M. Kan, A combinatorial definition of homotopy groups, Ann. of Math. (2) 67 (1958), 282-312. MR 22 #1897.
  • 50. G. M. Kelly, On Mac Lane's conditions for coherence of natural associativities, commutativities, etc., J. Algebra 1 (1964), 397-402. MR 32 #132.
  • 51. G. M. Kelly and S. Mac Lane, Coherence in closed categories, J. Pure Appl. Algebra 1 (1971), no. 1, 97-140; erratum, ibid. no. 2, 219. MR 44 #278; 45 #1988.
  • 52. G. M. Kelly and S. Mac Lane, Closed coherence for a natural transformation, Coherence in Categories, Lecture Notes in Math., vol. 281, Springer-Verlag, Berlin, Heidelberg and New York, 1972, pp. 1-28. MR 48 #8591.
  • 53. A. Kock and G. C. Wraith, Elementary toposes, Lecture Notes Series, no. 30, Aarhus Universitet, Aarhus, Denmark, 1971.
  • 54. J. Lambek, Deductive systems and categories. I. Syntactic calculus and residuated categories, Math. Systems Theory 2 (1968), 287-318. MR 38 #4277.
  • 55. J. Lambek, Deductive systems and categories. II. Standard constructions and closed categories, Category Theory, Homology Theory and their Applications, I (Battelle Institute Conf., Seattle, Wash., 1968, Vol. One), Lecture Notes in Math., vol. 86, Springer-Verlag, Berlin, Heidelberg and New York, 1969, pp. 76-122. MR 39 #3967.
  • 56. K. Lamotke, Semisimpliziale algebraische Topologie, Die Grundlehren der math. Wissenschaften, Band 147, Springer-Verlag, Berlin, Heidelberg and New York, 1968. MR 39 #6318.
  • 57. F. W. Lawvere, Functorial semantics of algebraic theories, Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 869-872. MR 28 #2143.
  • 58. F. W. Lawvere, An elementary theory of the category of sets, Proc. Nat. Acad. Sci. U.S.A. 52 (1964), 1506-1511. MR 30 #3025.
  • 59. F. W. Lawvere. (editor), Toposes, algebraic geometry and logic, Lecture Notes in Math., vol. 274, Springer-Verlag, Berlin, Heidelberg and New York, 1972. MR 48 #8592.
  • 60. S. Mac Lane, Some interpretations of abstract linear dependence in terms of projective geometry, Amer. J. Math. 58 (1936), 236-240.
  • 61. S. Mac Lane, A lattice formulation for transcendence degrees and p-bases, Duke Math. J. 4 (1938), 455-468.
  • 62. S. Mac Lane, The uniqueness of the power series representation of certain fields with valuations, Ann. of Math. 39 (1938), 370-382.
  • 63. S. Mac Lane, Modular fields, I. Separating transcendence bases, Duke Math. J. 5 (1939), 372-393.
  • 64. S. Mac Lane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23-45. MR 1, 3.
  • 65. S. Mac Lane, Subfields and automorphism groups of p-adic fields, Ann. of Math. 40 (1939), 423-442.
  • 66. S. Mac Lane, Note on the relative structure of p-adic fields, Ann. of Math. (2) 41 (1940), 751-753. MR 2, 123.
  • 67. S. Mac Lane, Modular fields, Amer. Math. Monthly 47 (1940), 259-274. MR 1, 328.
  • 68. S. Mac Lane, Homology products in K(Π,n), Proc. Amer. Math. Soc. 5 (1954), 642-651. MR 16, 160.
  • 69. S. Mac Lane, Extensions and obstructions for rings, Illinois J. Math. 2 (1958), 316-345. MR 20 #5228.
  • 70. S. Mac Lane, Locally small categories and the foundations of set theory, Infinitistic Methods (Proc. Sympos. Foundations of Math., Warsaw, 1959), Pergamon, Oxford; PWN, Warsaw, 1961, pp. 25-43. MR 33 #168.
  • 71. S. Mac Lane, Homology, Die Grundlehren der math. Wissenschaften, Band 114, Academic Press, New York: Springer-Verlag, Berlin, Göttingen, Heidelberg, 1963; 3rd corrected printing, 1975. MR 28 #122.
  • 72. S. Mac Lane, Some additional advances in algebra, Studies in Modern Algebra (A. A. Albert, editor), Studies in Math., vol. 2, The Math. Assoc, of Amer.; distributed by Prentice-Hall, Englewood Cliffs, N.J., 1963, pp. 35-58. MR 26 #3750.
  • 73. S. Mac Lane, Natural associativity and commutativity, Rice Univ. Studies 49 (1963), no. 4, 28-46. MR 30 #1160.
  • 74. S. Mac Lane, The influence of M. H. Stone on the origins of category theory, Functional Analysis and Related Fields (F. E. Browder, editor), Springer-Verlag, Berlin, Heidelberg and New York, 1970, pp. 228-241.
  • 75. S. Mac Lane, The Milgram bar construction as a tensor product of functors, The Steenrod Algebra and its Applications (Proc. Conf. to Celebrate N. E. Steenrod's Sixtieth Birthday, Battelle Memorial Inst., Columbus, Ohio, 1970), Lecture Notes in Math., vol. 168, Springer-Verlag, Berlin, Heidelberg and New York, 1970; pp. 135-152. MR 42 #8495.
  • 76. S. Mac Lane, Categories for the working mathematician, Springer-Verlag, Berlin, Heidelberg and New York, 1971.
  • 77. S. Mac Lane, Sets, topoi, and internal logic in categories, Proc. Logic Colloquium (Bristol, 1973) edited by H. E. Rose and J. C. Shepherdson, North-Holland Publishing Co., Amsterdam. Oxford 1975, pp. 119-134.
  • 78. S. Mac Lane and O. F. G. Schilling, Normal algebraic number fields, Trans. Amer. Math. Soc. 50 (1941), 295-384. MR 3, 102.
  • 79. S. Mac Lane and F. K. Schmidt, The generation of inseparable fields, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 583-587. MR 3, 263.
  • 80. E. Manes, Algebraic theories, Graduate Texts in Math., Springer-Verlag, Berlin, Heidelberg and New York (to appear).
  • 81. J. P. May, Simplicial objects in algebraic topology, Van Nostrand Math. Studies, no. 11, Van Nostrand, Princeton, N.J., 1967. MR 36 #5942.
  • 82. R. J. Milgram, The bar construction and abelian H-spaces, Illinois J. Math. 11 (1967), 242-250. MR 34 #8404.
  • 83. M. Mori, On the three-dimensional cohomology group of Lie algebras, J. Math. Soc. Japan 5 (1953), 171-183. MR 15, 282.
  • 84. D. G. Quillen, Homotopical algebra, Lecture Notes in Math, vol 43, Springer-Verlag, Berlin, Heidelberg and New York, 1967. MR 36 #6480.
  • 85. D. G. Quillen, On the cohomology and K-theory of the general linear groups over a finite field, Ann. of Math. (2) 96 (1972), 552-586. MR 47 #3565.
  • 86. N. Saavedra Rivano, Catégories tannakiennes, Lecture Notes in Math., vol. 265, Springer-Verlag, Berlin, Heidelberg and New York, 1972. MR 49 #2769.
  • 87. M. Rothenberg and N. E. Steenrod, The cohomology of classifying spaces of H-spaces, Bull. Amer. Math. Soc. 71 (1965), 872-875. MR 34 #8405.
  • 88. J.-P. Serre, Cohomologie galoisienne, Cours au Collège de France, 1962-1963, 2nd. ed., Lectures Notes in Math., vol. 5, Springer-Verlag, Berlin, Heidelberg and New York, 1964. MR 31 #4785.
  • 89. U. Shukla, Cohomologie des algèbres associatives, Ann. Sci. École Norm. Sup. (3) 78 (1961), 163-209. MR 24 #A2605.
  • 90. J. D. Stasheff, Homotopy associativity of H-spaces. I, Trans. Amer. Math. Soc. 108 (1963), 275-292. MR 28 #1623.
  • 91. N. E. Steenrod, Milgram's classifying space of a topological group, Topology 7 (1968), 349-368. MR 38 # 1675.
  • 92. D. P. Sullivan, Geometric topology, part 1, Localization, periodicity, and Galois symmetry, Mimeographed notes, M.I.T., Cambridge, Mass., 1970.
  • 93. J. Tate, The higher dimensional cohomology groups of class field theory, Ann. of Math (2) 56 (1952), 294-297. MR 14, 252.
  • 94. O. Teichmüller, p-Algebren, Deutsche Math. 1 (1936), 362-388.
  • 95. O. Teichmüller, Diskret bewertete perfekte Körper mit unvollkommenem Restklassenkörper, J. Reine Angew Math. 176 (1936), 141-152.
  • 96. O. Teichmüller, Über die sogenannte nichtkommutative Galoissche Theorie und die Relation $\xi\sb {łambda,µ,\nu}\xi\sb {łambda,µ\nu,\pi}\xi\sp {łambda}\sb {µ,\nu,\pi}=\xi\sb {łambda,µ,\nu \pi}\xi\sb {łambda,µ,\nu,\pi}$, Deutsche Math. 5 (1940), 138-149. MR 2, 122.
  • 97. O. Veblen, Analysis situs, 2nd ed., Amer. Math. Soc. Colloq. Publ., vol. 5, part II, Amer. Math. Soc., Providence, R. I., 1931.
  • 98. R. Voreadou, A coherence theorem for closed categories (to appear).
  • 99. R. Voreadou, Non-commutative diagrams in closed categories (to appear).
  • 100. A. Weil, Foundations of algebraic geometry, Amer. Math. Soc. Colloq. Publ., vol. 29, Amer. Math. Soc., Providence, R. I., 1946. MR 9, 303.
  • 101. J. H. C. Whitehead, A certain exact sequence, Ann. of Math. (2) 52 (1950), 51-110. MR 12, 43.
  • 102. H. Whitney, On the abstract properties of linear dependence, Amer. J. Math. 57 (1935), 509-533.
  • 103. H. Whitney, The maps of an n-complex into an n-sphere, Duke Math. J. 3 (1937), 51-55.
  • 104. H. Whitney, Tensor products of abelian groups, Duke Math. J. 4 (1938), 495-528.