Bulletin of the American Mathematical Society

Review: Hans Rademacher, Topics in analytic number theory

H. M. Stark

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. Volume 81, Number 4 (1975), 663-672.

Dates
First available: 4 July 2007

Permanent link to this document
http://projecteuclid.org/euclid.bams/1183537131

Citation

Stark, H. M. Review: Hans Rademacher, Topics in analytic number theory . Bulletin of the American Mathematical Society 81 (1975), no. 4, 663--672. http://projecteuclid.org/euclid.bams/1183537131.


Export citation

References

  • 1. H. L. Alder, Partition identities—from Euler to the present, Amer. Math. Monthly 76 (1969), 733-746. MR 41 #8366.
  • 2. George E. Andrews, On the general Rogers-Ramanujan theorem, Mem. Amer. Math. Soc. No. 152 (1974).
  • 3. S. Chowla, Remarks on class-invariants and related topics, Seminar on Complex Multiplication, Institute for Adv. Study, Princeton, N.J., 1957/58, Lecture Notes in Math., no. 21, Springer-Verlag, Berlin and New York, 1966, VI-1 to VI-15. MR 34 #1278.
  • 4. Pierre Deligne and Jean-Pierre Serre, Formes modulaires de poids 1 (to appear).
  • 5. Marvin Isadore Knopp, Fourier series of automorphic forms of non-negative dimension, Illinois J. Math. 5 (1961), 18-42. MR 23 #A137.
  • 6. W. Kuyk, et al. (editors), Modular functions of one variable. I, II, III, Lecture Notes in Math., nos. 320, 349, 350, Springer-Verlag, New York, 1973.
  • 7. C. Meyer, Über einige Anwendungen Dedekindscher Summen, J. Reine Angew. Math. 198 (1957), 143-203. MR 21 #3396.
  • 8. Hans Petersson, Über die Entwicklungskoeffizienten der automorphen formen, Acta Math. 58 (1932), 169-215.
  • 9. Hans A. Rademacher, On the transformation of $łog \eta(\tau)$, J. Indian Math. Soc. 19 (1955), 25-30. MR 17, 15.
  • 10. Hans A. Rademacher, Some remarks on certain generalized Dedekind sums, Acta Arith. 9 (1964), 97-105. MR 29 #1172.
  • 11. Hans A. Rademacher, On the partition function p (n), Proc. London Math. Soc. (2) 43 (1937), 241-254.
  • 12. Hans A. Rademacher, The Fourier coefficients of the modular invariant j (T), Amer. J. Math. 60 (1938), 501-512.
  • 13. Hans A. Rademacher, Trends in research: the analytic number theory, Bull. Amer. Math. Soc. 48 (1942), 379-401. MR 3, 271.
  • 14. Hans Rademacher and Emil Grosswald, Dedekind sums, Carus Mathematical Monograph, 16, 1972.
  • 15. Hans Rademacher and Herbert S. Zuckerman, On the Fourier coefficients of certain modular forms of positive dimension, Ann. Math. (2) 39 (1938), 433-462.
  • 16. C. L. Siegel, Topics in complex function theory. Vol. III, Wiley, New York, 1973.
  • 17. C. L. Siegel, Lectures on advanced analytic number theory, Tata Institute of Fundamental Research, Bombay, 1961.
  • 18. C. L. Siegel, A simple proof of $\eta(-1/\tau)=\eta(\tau)\sqrt{}\tau/i$, Mathematika 1 (1954), 4. MR 16, 16.
  • 19. A. Weil, Sur une formule classique, J. Math. Soc. Japan 20 (1968), 400-402. MR 37 #155.
  • 20. Herbert S. Zuckerman, On the coefficients of certain modular forms belonging to subgroups of the modular group, Trans. Amer. Math. Soc. 45 (1939), 289-321.
  • 21. Herbert S. Zuckerman, On the expansions of certain modular forms of positive dimension. Amer. J. Math. 62 (1940), 127-152. MR 1, 214.