Bulletin of the American Mathematical Society

A survey of integral representation theory

Irving Reiner

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. Volume 76, Number 2 (1970), 159-227.

Dates
First available: 4 July 2007

Permanent link to this document
http://projecteuclid.org/euclid.bams/1183531476

Mathematical Reviews number (MathSciNet)
MR0254092

Zentralblatt MATH identifier
0194.04701

Subjects
Primary: 1075 1548 2080 1640
Secondary: 1069 1620

Citation

Reiner, Irving. A survey of integral representation theory. Bulletin of the American Mathematical Society 76 (1970), no. 2, 159--227. http://projecteuclid.org/euclid.bams/1183531476.


Export citation

References

  • 1. M. Auslander and O. Goldman, Maximal orders, Trans. Amer. Math. Soc. 97 (1960), 1-24. MR 22 #8034.
  • 2. M. Auslander and O. Goldman, The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), 367-409. MR 22 #12130.
  • 3. G. Azumaya, Corrections and supplementaries to my paper concerning Krull-Remak-Schmidt's theorem, Nagoya Math. J. 1 (1950), 117-124. MR 12, 314.
  • 4. D. Ballew, The module index, projective modules and invertible ideals, Ph.D. Thesis, University of Illinois, Urbana, Ill., 1969.
  • 4a. D. Ballew, The module index and invertible ideals, Trans. Amer. Math. Soc. 148 (1970), (to appear).
  • 5. B. Banaschewski, Integral group rings of finite groups, Canad. Math. Bull. 10 (1967), 635-642. MR 38 #1187.
  • 6. L. F. Barannik and P. M. Gudivok, Projective representations of finite groups over rings, Dopovīdī Akad. Nauk Ukraïn. RSR Ser. A 1968, 294-297. (Ukrainian) MR 37 #4177.
  • 7. L. F. Barannik and P. M. Gudivok, On indecomposable projective representations of finite groups, Dopovīdī Akad. Nauk Ukraïn. RSR Ser. A 1969, 391-393. (Ukrainian)
  • 8. H. Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466-488. MR 28 #1212,
  • 9. H. Bass, Projective modules over algebras, Ann. of Math. (2) 73 (1961), 532-542. MR 31 #1278.
  • 10. H. Bass, Torsion free and projective modules, Trans. Amer. Math. Soc. 102 (1962), 319-327. MR 25 #3960.
  • 11. H. Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8-28. MR 27 #3669.
  • 12. H. Bass, K-theory and stable algebra, Inst. Hautes Études Sci. Publ. Math. No. 22 (1964), 5-60. MR 30 #4805.
  • 13. H. Bass, The Dirichlet unit theorem, induced characters, and Whitehead groups of finite groups, Topology 4 (1966), 391-410. MR 33 #1341.
  • 14. H. Bass, Algebraic K-theory, Math. Lecture Note Series, Benjamin, New York, 1968.
  • 15. E. A. Bender, Classes of matrices and quadratic fields, Linear Algebra and Appl. 1 (1968), 195-201. MR 37 #6301.
  • 16. S. D. Berman, On certain properties of integral group rings, Dokl. Akad. Nauk SSSR 91 (1953), 7-9. (Russian) MR 15, 99.
  • 17. S. D. Berman, On isomorphism of the centers of group rings of p-groups, Dokl. Akad. Nauk SSSR 91 (1953), 185-187. (Russian) MR 15, 99.
  • 18. S. D. Berman, On a necessary condition for isomorphism of integral group rings, Dopovīdī Akad. Nauk Ukraïn. RSR 1953, 313-316. (Ukrainian) MR 15, 599.
  • 19. S. D. Berman, On the equation xm = 1 in an integral group ring, Ukrain. Mat. Ž. 7 (1955), 253-261. (Russian) MR 17, 1048.
  • 20. S. D. Berman, On certain properties of group rings over the field of rational numbers, Užgorod. Gos. Univ. Naučn. Zap. Him. Fiz. Mat. 12 (1955), 88-110. (Russian) MR 20 #3920.
  • 21. S. D. Berman, On automorphisms of the center of an integral group ring, Užgorod. Gos. Univ. Naučn. Zap. Him. Fiz. Mat. (1960), no. 3, 55. (Russian)
  • 22. S. D. Berman, Integral representations of finite groups, Dokl. Akad. Nauk SSSR 152 (1963), 1286-1287 = Soviet Math. Dokl. 4 (1963), 1533-1535. MR 27 #4854.
  • 23. S. D. Berman, On the theory of integral representations of finite groups, Dokl. Akad. Nauk SSSR 157 (1964), 506-508 = Soviet Math. Dokl. 5 (1964), 954-956. MR 29 #2308.
  • 24. S. D. Berman, Integral representations of a cyclic group containing two irreducible rational components, In Memoriam: N. G. čebotarev, Izdat. Kazan Univ., Kazan, 1964, pp. 18-29. (Russian) MR 33 #4154.
  • 25. S. D. Berman, On integral monomial representations of finite groups, Uspehi Mat. Nauk 20 (1965), no. 4 (124), 133-134. (Russian) MR 33 #4155.
  • 26. S. D. Berman, Representations of finite groups over an arbitrary field and over rings of integers, Izv. Akad. Nauk SSSR Ser. Mat. 30 (1966), 69-132; English transl., Amer. Math. Soc. Transl. (2) 64 (1967), 147-215. MR 33 #5747.
  • 27. S. D. Berman and P. M. Gudivok, Integral representations of finite groups, Dokl. Akad. Nauk SSSR 145 (1962), 1199-1201 =Soviet Math. Dokl. 3 (1962), 1172-1174. MR 25 #3095.
  • 28. S. D. Berman and P. M. Gudivok, Integral representations of finite groups, Užgorod. Gos. Univ. Naučn. Zap. Him. Fiz. Mat. (1962), no. 5, 74-76. (Russian)
  • 29. S. D. Berman and P. M. Gudivok, Indecomposable representations of finite groups over the ring of p-adic integers, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 875-910; English transl., Amer. Math. Soc. Transl. (2) 50 (1966), 77-113. MR 29 #3550.
  • 30. S. D. Berman and A. I. Lihtman, On integral representations of finite nilpotent groups, Uspehi Mat. Nauk 20 (1965), no. 5 (125), 186-188. (Russian) MR 34 #7673.
  • 31. S. D. Berman and A. R. Rossa, On integral group-rings of finite and periodic groups, Algebra and Math. Logic: Studies in Algebra, Izdat. Kiev Univ., Kiev, 1966, pp. 44-53. (Russian) MR 35 #265.
  • 31a. A. Bialnicki-Birula, On the equivalence of integral representations of finite groups, Proc. Amer. Math. Soc. (to appear).
  • 32. Z. I. Borevič and D. K. Faddeev, Theory of homology in groups. I, II, Vestnik Leningrad. Univ. 11 (1956), no. 7, 3-39; 14 (1959), no. 7, 72-87. (Russian) MR 18, 188; MR 21 #4968.
  • 33. Z. I. Borevič and D. K. Faddeev, Integral representations of quadratic rings, Vestnik Leningrad. Univ. 15 (1960), no. 19, 52-64. (Russian) MR 27 #3668.
  • 34. Z. I. Borevič and D. K. Faddeev, Representations of orders with cyclic index, Trudy Mat. Inst. Steklov. 80 (1965), 51-65. Proc. Steklov Inst. Math. 80 (1965), 56-72. MR 34 #5805.
  • 35. Z. I. Borevič and D. K. Faddeev, Remarks on orders with a cyclic index, Dokl. Akad. Nauk SSSR 164 (1965), 727-728 = Soviet Math. Dokl. 6 (1965), 1273-1274. MR 32 #7601.
  • 36. N. Bourbaki, Algèbre commutative, Actualités Sci. Indust., no. 1293, Hermann, Paris, 1961. MR 30 #2027.
  • 37. A. A. Bovdi, Periodic normal divisors of the multiplicative group of a group ring, Sibirsk Mat. Ž. 9 (1968), 495-498 = Siberian Math. J. 9 (1968), 374-376. MR 37 #2853.
  • 38. J. O. Brooks, Classification of representation modules over quadratic orders, Ph.D. Thesis, University of Michigan, Ann Arbor, Mich., 1964.
  • 39. A. Brumer, Structure of hereditary orders, Bull. Amer. Math. Soc. 69 (1963), 721-724; Addendum, ibid. 70 (1964), 185. MR 27 #2543.
  • 40. H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, N. J., 1956. MR 17, 1040.
  • 41. C. Chevalley, L'arithmétique dans les algèbres de matrices, Actualités Sci. Indust., no. 323, Hermann, Paris, 1936.
  • 42. J. A. Cohn and D. Livingstone, On groups of order p3, Canad. J. Math. 15 (1963), 622-624. MR 27 #3700.
  • 43. J. A. Cohn and D. Livingstone, On the structure of group algebras, Canad. J. Math. 17 (1965), 583-593. MR 31 #3514.
  • 44. D. B. Coleman, Idempotents in group rings, Proc. Amer. Math. Soc. 17 (1966), 962. MR 33 #1379.
  • 44a. S. B. Conlon, Structure in representation algebras, J. Algebra 5 (1967), 274-279. MR 34 #2719.
  • 44b. S. B. Conlon, Relative components of representations, J. Algebra 8 (1968), 478-501.
  • 44c. S. B. Conlon, Decompositions induced from the Burnside algebra, J. Algebra 10 (1968), 102-122. MR 38 #5945.
  • 44d. S. B. Conlon, Monomial representations under integral similarity, J. Algebra 13 (1969), 496-508.
  • 45. I. G. Connell, On the group ring, Canad. J. Math. 15 (1963), 650-685. MR 27 #3666.
  • 46. C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Pure and Appl. Math., vol. XI, Interscience, New York, 1962; 2nd ed., 1966. MR 26 #2519.
  • 47. E. C. Dade, Rings in which no fixed power of ideal classes becomes invertible, Math. Ann. 148 (1962), 65-66. MR 25 #3963.
  • 48. E. C. Dade, Some indecomposable group representations, Ann. of Math. (2) 77 (1963), 406-412. MR 26 #2521.
  • 49. E. C. Dade, The maximal finite groups of 4X4 integral matrices, Illinois J. Math. 9 (1965), 99-122. MR 30 #1192.
  • 50. E. C. Dade, D. W. Robinson, O. Taussky, and M. Ward, Divisors of recurrent sequences, J. Reine Angew. Math. 214/215 (1964), 180-183. MR 28 #5079.
  • 51. E. C. Dade and O. Taussky, Some new results connected with matrices of rational integers, Proc. Sympos. Pure Math., vol. 8, Amer. Math. Soc. Providence, R. I., 1965, pp. 78-88. MR 32 #2395.
  • 51a. E. C. Dade and O. Taussky, On the different in orders in an algebraic number field and special units connected with it, Acta Arith. 9 (1964), 47-51.
  • 52. E. C. Dade, O. Taussky and H. Zassenhaus, On the semigroup of ideal classes in an order of an algebraic number field, Bull. Amer. Math. Soc. 67 (1961), 305-308. MR 25 #65.
  • 53. E. C. Dade, O. Taussky and H. Zassenhaus, On the theory of orders, in particular on the semigroup of ideal classes and genera of an order in an algebraic number field, Math. Ann. 148 (1962), 31-64. MR 25 #3962.
  • 54. K. deLeeuw, Some applications of cohomology to algebraic number theory and group representations (unpublished).
  • 55. F. R. DeMeyer, The trace map and separable algebras, Osaka J. Math. 3 (1966), 7-11. MR 37 #4122.
  • 56. M. Deuring, Algebren, Springer-Verlag, Berlin, 1935; rev. ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 41, 1968. MR 37 #4106.
  • 57. F. E. Diederichsen, Über die Ausreduktion ganzzahliger Gruppendarstellungen bei arithmetischer Aquivalenz, Abh. Math. Sem. Univ. Hamburg 14 (1938), 357-412.
  • 58. A. Dress, A remark on the Krull-Schmidt theorem for integral group representations of rank 1 (to appear).
  • 59. A. Dress, An intertwining number theorem for integral representations and applications (to appear).
  • 60. A. Dress, On the decomposition of modules, Bull. Amer. Math. Soc. 75 (1969), 984-986.
  • 61. A. Dress, On integral representations, Bull. Amer. Math. Soc. 75 (1969), 1031-1034.
  • 62. A. Dress, The ring of monomial representations, I: Structure Theory (to appear).
  • 63. A. Dress, Vertices of integral representations, Math. Z. (to appear).
  • 64. A. Dress, On relative Grothendieck rings, Bull. Amer. Math. Soc. 75 (1969), 955-958.
  • 65. V. S. Drobotenko, Integral representations of primary abelian groups, Algebra and Math. Logic: Studies in Algebra, Izdat. Kiev. Univ., Kiev, 1966, pp. 111-121. (Russian) MR 34 #4375.
  • 66. V. S. Drobotenko, E. S. Drobotenko, Z. P. Žilinskaja and E. Y. Pogoriljak, Representations of the cyclic group of prime order p over residue classes mod p8, Ukrain. Mat. Ž. 17 (1965), no. 5, 28-42; English transl., Amer. Math. Soc. Transl. (2) 69 (1968), 241-256. MR 32 #5743.
  • 67. V. S. Drobotenko and A. I. Lihtman, Representations of finite groups over the ring of residue classes mod p8, Dokl. Užgorod Univ. 3 (1960), 63. (Russian)
  • 68. V. S. Drobotenko, P. M. Gudivok and A. I. Lihtman, On representations of finite groups over the ring of residue classes mod m, Ukrain. Mat. Ž. 16 (1964), 82-89. (Russian) MR 29 #4810.
  • 69. V. S. Drobotenko and V. P. Rud'ko, Representations of a cyclic group by groups of automorphisms of a certain class of modules, Dopovīdī Akad. Nauk Ukraïn. RSR Ser. A. 1968, 302-304. (Ukrainian) MR 37 #2873.
  • 70. Ju. A. Drozd, Representations of cubic Z-rings, Dokl. Akad. Nauk SSSR 174 (1967), 16-18 = Soviet Math. Dokl. 8 (1967), 572-574. MR 35 #6659.
  • 70a. Ju. A. Drozd, On the distribution of maximal sublattices, Mat. Zametki 6 (1969), 19-24.
  • 70b. Ju. A. Drozd, Adèles and integral representations, Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969), 1080-1088.
  • 71. Ju. A. Drozd, and V. V. Kiričenko, Representation of rings in a second order matrix algebra, Ukrain. Mat. Ž. 19 (1967), no. 3, 107-112. (Russian) MR 35 #1632.
  • 72. Ju. A. Drozd, and V. V. Kiričenko, Hereditary orders, Ukrain. Mat. Ž. 20 (1967), 246-248. (Russian).
  • 73. Ju. A. Drozd, V. V. Kiričenko and A. V. Roĭter, On hereditary and Bass orders, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 1415-1436 = Math. USSR Izv. 1 (1967), 1357-1376. MR 36 #2608.
  • 74. Ju. A. Drozd and A. V. Roĭter, Commutative rings with a finite number of indecomposable integral representations, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 783-798 = Math. USSR Izv. 1 (1967), 757-772. MR 36 #3768.
  • 75. Ju. A. Drozd and V. M. Turčin, Number of representation modules in a genus for integral second order matrix rings, Mat. Zametki 2 (1967), 133-138 = Math. Notes 2 (1967), 564-566. MR 37 #5253.
  • 76. V. H. Dyson and K. W. Roggenkamp, Modules over orders, Springer Lecture Notes (to appear).
  • 77. M. Eichler, Über die Idealklassenzahl total definiter Quaternionenalgebren, Math. Z. 43 (1938), 102-109.
  • 78. M. Eichler, Über die Idealklassenzahl hyperkomplexer Zahlen, Math. Z. 43 (1938), 481-494.
  • 79. D. K. Faddeev, On the semigroup of genera in the theory of integer representations, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 475-478; English transl., Amer. Math. Soc. Transl. (2) 64 (1967), 97-101. MR 28 #5089.
  • 80. D. K. Faddeev, An introduction to multiplicative theory of modules of integral representations, Trudy Mat. Inst. Steklov. 80 (1965), 145-182 = Proc. Steklov Inst. Math. 80 (1965), 164-210. MR 34 #5873.
  • 81. D. K. Faddeev, On the theory of cubic Z-rings, Trudy Mat. Inst. Steklov. 80 (1965), 183-187 = Proc. Steklov Inst. Math. 80 (1965), 211-215. MR 33 #4083.
  • 82. D. K. Faddeevv, Equivalence of systems of integer matrices, Izv. Akad. Nauk SSSR Ser. Mat. 30 (1966), 449-454; English transl., Amer. Math. Soc. Transl. (2) 71 (1968), 43-48. MR 33 #2642.
  • 83. D. K. Faddeev, The number of classes of exact ideals for Z-rings, Mat. Zametki 1 (1967), 625-632 = Math. Notes 1 (1967), 415-419. MR 35 #5466.
  • 84. R. Fossum, The Noetherian different of projective orders, J. Reine Angew. Math. 224 (1966), 207-218. MR 36 #5119.
  • 84a. R. Fossum, Maximal orders over Krull domains, J. Algebra 10 (1968), 321-332. MR 38 #2130.
  • 85. A. Fröhlich, Ideals in an extension field as modules over the algebraic integers in a finite number field, Math. Z. 74 (1960), 29-38. MR 22 #4708.
  • 86. A. Fröhlich, The module structure of Kummer extensions over Dedekind domains, J. Reine Angew. Math. 209 (1962), 39-53. MR 28 #3988; p. 1247.
  • 87. A. Fröhlich, Invariants for modules over commutative separable orders, Quart. J. Math. Oxford Ser. (2) 16 (1965), 193-232. MR 35 #1583.
  • 88. A. Fröhlich, Resolvents, discriminants, and trace invariants, J. Algebra 4 (1966), 173-198. MR 34 #7499.
  • 89. I. Giorgiutti, Modules projectifs sur les algèbres de groupes finis, C.R. Acad. Sci. Paris 250 (1960), 1419-1420. MR 23 #A1691.
  • 90. J. A. Green, On the indecomposable representations of a finite group, Math. Z. 70 (1958/59), 430-445. MR 24 #A1304.
  • 91. J. A. Green, Blocks of modular representations, Math. Z. 79 (1962), 100-115. MR 25 #5114.
  • 92. J. A. Green, The modular representation algebra of a finite group, Illinois J. Math. 6 (1962), 607-619. MR 25 #5106.
  • 93. J. A. Green, A transfer theorem for modular representations, J. Algebra 1 (1964), 73-84. MR 29 #147.
  • 94. K. Gruenberg, Residual properties of infinite soluble groups, Proc. London Math. Soc. (3) 7 (1957), 29-62. MR 19, 386.
  • 95. P. M. Gudivok, Integral representations of a finite group with a noncyclic Sylow p-subgroup, Uspehi Mat. Nauk 16 (1961), 229-230.
  • 96. P. M. Gudivok, Integral representations of groups of type (p, p), Dokl. Užgorod Univ. Ser. Phys.-Mat. Nauk (1962), no. 5, 73.
  • 97. P. M. Gudivok, On p-adic integral representations of finite groups, Dokl. Užgorod Univ. Ser. Phys.-Mat. Nauk (1962), no. 5, 81-82.
  • 98. P. M. Gudivok, Representations of finite groups over certain local rings, Dopovīdī Akad. Nauk Ukraïn. RSR 1964, 173-176. (Ukrainian) MR 29 #3551.
  • 99. P. M. Gudivok, Representations of finite groups over quadratic rings, Dokl. Akad. Nauk SSSR 159 (1964), 1210-1213 =Soviet Math. Dokl. 5 (1964), 1669-1672. MR 30 #174.
  • 100. P. M. Gudivok, Representations of finite groups over local number rings, Dopovīdī Akad. Nauk Ukraïn. RSR 1966, 979-981. (Ukrainian) MR 34 #1407.
  • 101. P. M. Gudivok, Representations of finite groups over number rings, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 799-834 = Mat. USSR Izv. 1 (1967), 773-805. MR 36 #1554.
  • 102. P. M. Gudivok and V. P. Rud'ko, On p-adic integer-valued representations of a cyclic p-group, Dopovīdī Akad. Nauk Ukraïn. RSR 1966, 1111-1113. (Ukrainian) MR 34 #1409.
  • 103. T. Hannula, The integral representation ring a(RkG), Trans. Amer. Math. Soc. 133 (1968), 553-559.
  • 104. M. Harada, Hereditary orders, Trans. Amer. Math. Soc. 107 (1963), 273-290. MR 27 #1474.
  • 105. M. Harada, Structure of hereditary orders over local rings, J. Math. Osaka City Univ. 14 (1963), 1-22. MR 29 #5879.
  • 106. M. Harada, Multiplicative ideal theory in hereditary orders, J. Math. Osaka City Univ. 14 (1963), 83-106. MR 29 #5880b.
  • 107. A. Hattori, Rank element of a projective module, Nagoya Math. J. 25 (1965), 113-120. MR 31 #226.
  • 108. A. Hattori, Semisimple algebras over a commutative ring, J. Math. Soc. Japan 15 (1963), 404-419. MR 28 #2125.
  • 109. A. Heller, On group representations over a valuation ring, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 1194-1197. MR 23 #A2468.
  • 110. A. Heller, Some exact sequences in algebraic K-theory, Topology 3 (1965), 389-408. MR 31 #3477.
  • 111. A. Heller and I. Reiner, Indecomposable representations, Illinois J. Math. 5 (1961), 314-323. MR 23 #A222.
  • 112. A. Heller and I. Reiner, Representations of cyclic groups in rings of integers. I, II, Ann. of Math. (2) 76 (1962), 73-92; (2) 77 (1963), 318-328. MR 25 #3993; MR 26 #2520.
  • 113. A. Heller and I. Reiner, On groups with finitely many indecomposable integral representations, Bull. Amer. Math. Soc. 68 (1962), 210-212. MR 25 #1222.
  • 114. A. Heller and I. Reiner, Grothendieck groups of orders in semisimple algebras, Trans. Amer. Math. Soc. 112 (1964), 344-355. MR 28 #5093.
  • 115. A. Heller and I. Reiner, Grothendieck groups of integral group rings, Illinois J. Math. 9 (1965), 349-360. MR 31 #211.
  • 116. D. G. Higman, Indecomposable representations at characteristic p, Duke Math. J. 21 (1954), 377-381. MR 16, 794.
  • 117. D. G. Higman, Induced and produced modules, Canad. J. Math. 7 (1955), 490-508. MR 19, 390.
  • 118. D. G. Higman, On orders in separable algebras, Canad. J. Math. 7 (1955), 509-515. MR 19, 527.
  • 119. D. G. Higman, Relative cohomology, Canad. J. Math. 9 (1957), 19-34. MR 18, 715.
  • 120. D. G. Higman, On isomorphisms of orders, Michigan Math. J. 6 (1959), 255-257. MR 22 #62.
  • 121. D. G. Higman, On representations of orders over Dedekind domains, Canad. J. Math. 12 (1960), 107-125. MR 22 #63.
  • 122. D. G. Higman and J. E. MacLaughlin, Finiteness of class numbers of representations of algebras over function fields, Michigan Math. J. 6 (1959), 401-404. MR 22 #39.
  • 123. G. Higman, The units of group-rings, Proc. London Math. Soc. (2) 46 (1940), 231-248. MR 2, 5.
  • 124. R. Holvoet, Sur l'isomorphie d'algèbres de groupes, Bull. Soc. Math. Belg. 20 (1968), 264-282.
  • 124a. D. A. Jackson, On a problem in the theory of integral group rings, Ph.D. thesis, Oxford University, Oxford, 1967.
  • 124b. D. A. Jackson, The group of units of the integral group ring of finite metabelian and finite nilpotent groups, Quart. J. Math. 20 (1969), 319-331.
  • 125. H. Jacobinski, Über die Hauptordnung eines Körpers als Gruppenmodul, J. Reine Angew. Math. 213 (1963/64), 151-164. MR 29 #1200.
  • 126. H. Jacobinski, On extensions of lattices, Michigan Math. J. 13 (1966), 471-475. MR 34 #4377.
  • 127. H. Jacobinski, Sur les ordres commutatifs avec un nombre fini de réseaux indécomposables, Acta Math. 118 (1967), 1-31. MR 35 #2876.
  • 128. H. Jacobinski, Über die Geschlechter von Gittern über Ordnungen, J. Reine Angew. Math. 230 (1968), 29-39. MR 37 #5250.
  • 129. H. Jacobinski, Genera and decompositions of lattices over orders, Acta. Math. 121 (1968), 1-29.
  • 130. H. Jacobinski, On embedding of lattices belonging to the same genus, Proc. Amer. Math. Soc. 24 (1970), 134-136.
  • 131. N. Jacobson, The theory of rings, Math. Surveys, no. II, Amer. Math. Soc., Providence, R. I., 1943. MR 5, 31.
  • 132. N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Publ., vol. 37, Amer. Math. Soc., Providence, R. I., 1956. MR 18, 373.
  • 133. W. E. Jenner, Block ideals and arithmetics of algebras, Compositio Math. 11 (1953), 187-203. MR 16, 7.
  • 134. W. E. Jenner, On the class number of non-maximal orders in (P-adic division algebras, Math. Scand. 4 (1956), 125-128. MR 18, 375.
  • 135. A. Jones, Groups with a finite number of indecomposable integral representations, Michigan Math. J. 10 (1963), 257-261. MR 27 #3698.
  • 136. A. Jones, Integral representations of the direct product of groups, Canad. J. Math. 15 (1963), 625-630. MR 27 #4870.
  • 137. A. Jones, On representations of finite groups over valuation rings, Illinois J. Math. 9 (1965), 297-303. MR 31 #257.
  • 138. I. Kaplansky, Elementary divisors and modules, Trans. Amer. Math. Soc. 66 (1949), 464-491. MR 11, 155.
  • 139. I. Kaplansky, Modules over Dedekind rings and valuation rings, Trans. Amer. Math. Soc 72 (1952), 327-340. MR 13, 719.
  • 140. I. Kaplansky, Submodules of quaternion algebras, Proc. London Math. Soc. (3) 19 (1969), 219-232.
  • 141. V. V. Kiričenko, Orders whose representations are all completely reducible, Mat. Zametki 2 (1967), 139-144 = Math. Notes 2 (1967), 567-570. MR 36 #2609.
  • 142. D. I. Knee, The indecomposable integral representations of finite cyclic groups, Ph.D. Thesis, M.I.T., Cambridge, Mass., 1962.
  • 143. M. Kneser, Einige Bemerkungen über ganzzahlige Darstellungen endlicher Gruppen, Arch. Math 17 (1966), 377-379. MR 34 #1408.
  • 144. S. A. Krugljak, Exact ideals in a second order integral matrix ring, Ukrain. Mat. Ž. 18 (1966), no. 3, 58-64. (Russian) MR 33 #7378.
  • 145. S. A. Krugljak, The Grothendieck group, Ukrain. Mat. Ž. 18 (1966), no. 5, 100-105. (Russian) MR 34 #204.
  • 146. T. Y. Lam, Induction theorems for Grothendieck groups and Whitehead groups of finite groups, Ann. Sci. École Norm. Sup. (4) 1 (1968), 91-148.
  • 147. R. Larson, Group rings over Dedekind domains. I, II, J. Algebra 5 (1967), 358-361; 7 (1967), 278-279. MR 35 #266; MR 35 #5525.
  • 148. C. G. Latimer and C. C. MacDuffee, A correspondence between classes of ideals and classes of matrices, Ann. of Math, (2) 34 (1933), 313-316.
  • 149. W. J. Leahey, The classification of the indecomposable integral representations of the dihedral group of order 2p, Ph.D. Thesis, M.I.T., Cambridge, Mass., 1962.
  • 150. M. P. Lee, Integral representations of dihedral groups of order 2p, Trans. Amer. Math. Soc. 110 (1964), 213-231. MR 28 #139.
  • 151. H. Leopoldt, Über die Hauptordnung der ganzen Elemente eines abelschen Zahlkörpers, J. Reine Angew. Math. 201 (1959), 119-149. MR 21 #7195.
  • 152. L. S. Levy, Decomposing pairs of modules, Trans. Amer. Math. Soc. 122 (1966), 64-80. MR 33 #2677.
  • 153. G. W. Mackey, On induced representations of groups, Amer. J. Math. 73 (1951), 576-592. MR 13, 106.
  • 154. J.-M. Maranda, On B-adic integral representations of finite groups, Canad. J. Math. 5 (1953), 344-355. MR. 15, 100.
  • 155. J.-M. Maranda, On the equivalence of representations of finite groups by groups of automorphisms of modules over Dedekind rings, Canad. J. Math. 7 (1955), 516-526. MR 19, 529.
  • 155a. J. Martinet, Sur l'arithmétique des extensions galoisiennes à groupe de Galois diédral d'ordre 2p, Ann. Inst. Fourier (Grenoble) 19 (1969) (to appear).
  • 156. A. Matuljauskas, Integral representations of a fourth-order cyclic group, Litovsk. Mat. Sb. 2 (1962), no. 1, 75-82. (Russian) MR 26 #6274.
  • 157. A. Matuljauskas, Integral representations of the cyclic group of order six, Litovsk. Mat. Sb. 2 (1962), no. 2, 149-157. (Russian) MR 27 #5835.
  • 158. A. Matuljauskas, On the number of indecomposable representations of the group Z8, Litovsk. Mat. Sb 3 (1963), no. 1, 181-188. (Russian) MR 29 #2309.
  • 159. A. Matuljauskas and M. Matuljauskene, On integral representations of a group of type (3, 3), Litovsk. Mat. Sb. 4 (1964), 229-233. (Russian) MR 29 #4812.
  • 160. Warren May, Commutative group algebras, Trans. Amer. Math. Soc. 136 (1969), 139-149. MR 38 #2224.
  • 160a. G. O. Michler, Structure of semi-perfect hereditary noetherian rings, J. Algebra 13 (1969), 327-344.
  • 161. T. Nakayama, A theorem on modules of trivial cohomology over a finite group, Proc. Japan Acad. 32 (1956), 373-376. MR 18, 191.
  • 162. T. Nakayama, On modules of trivial cohomology over a finite group, Illinois J. Math. 1 (1957), 36-43. MR 18, 793.
  • 163. T. Nakayama, On modules of trivial cohomology over a finite group. II: Finitely generated modules, Nagoya Math. J. 12 (1957), 171-176. MR 20 #4587.
  • 164. L. A. Nazarova, Unimodular representations of the four group, Dokl. Akad. Nauk SSSR 140 (1961), 1011-1014 = Soviet Math. Dokl. 2 (1961), 1304-1307. MR 24 #A770.
  • 165. L. A. Nazarova, Unimodular representations of the alternating group of degree four, Ukrain. Mat. Ž. 15 (1963), 437-444. (Russian) MR 28 #2148.
  • 166. L. A. Nazarova, Representations of a tetrad, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 1361-1378 = Math. USSR Izv. 1 (1967), 1305-1322. MR 36 #6400.
  • 167. L. A. Nazarova and A. V. Roĭter, Integral representations of the symmetric group of third degree, Ukrain. Mat. Ž. 14 (1962), 271-288. (Russian) MR 26 #6273.
  • 168. L. A. Nazarova and A. V. Roĭter, On irreducible representations of p-groups over Zp(ε), Ukrain. Mat. Ž. 18 (1966), no 1, 119-124. (Russian) MR 34 #254.
  • 169. L. A. Nazarova and A. V. Roĭter, On integral p-adic representations and representations over residue class rings, Ukrain. Mat. Ž. 19 (1967), no. 2, 125-126. (Russian) MR 35 #267.
  • 170. L. A. Nazarova and A. V. Roĭter, Refinement of a theorem of Bass, Dokl. Akad. Nauk SSSR 176 (1967), 266-268 = Soviet Math. Dokl. 8 (1967), 1089-1092. MR 37 #1402.
  • 171. L. A. Nazarova and A. V. Roĭter, Finitely generated modules over a dyad of a pair of local Dedekind rings, and finite groups having an abelian normal subgroup of index p, Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969), 65-89 = Math. USSR Izv. 3 (1969).
  • 172. M. Newman and O. Taussky, Classes of positive definite unimodular circulants, Canad. J. Math. 9 (1957), 71-73. MR 18, 634.
  • 173. M. Newman and O. Taussky, On a generalization of the normal basis in abelian algebraic number fields, Comm. Pure Appl. Math. 9 (1956), 85-91. MR 17, 829.
  • 174. R. J. Nunke, Modules of extensions over Dedekind rings, Illinois J. Math. 3 (1959), 222-241. MR 21 #1329.
  • 175. T. Obayashi, On the Grothendieck ring of an abelian p-group, Nagoya Math. J. 26 (1966), 101-113. MR 37 #1438.
  • 176. J. Oppenheim, Integral representations of cyclic groups of squarefree order, Ph.D. Thesis, University of Illinois, Urbana, Ill., 1962.
  • 177. D. S. Passman, Nil ideals in group rings, Michigan Math. J. 9 (1962), 375-384. MR 26 #2470.
  • 178. D. S. Passman, Isomorphic groups and group rings, Pacific J. Math. 15 (1965), 561-583. MR 33 #1381.
  • 179. L. C. Pu, Integral representations of non-abelian groups of order pq, Michigan Math. J. 12 (1965), 231-246. MR 31 #2321.
  • 180. T. Ralley, Decomposition of products of modular representations, J. London Math. Soc. 44 (1969), 480-484.
  • 181. I. Reiner, Maschke modules over Dedekind rings, Canad. J. Math. 8 (1956), 329-334. MR 18, 7.
  • 182. I. Reiner, Integral representations of cyclic groups of prime order, Proc. Amer. Math. Soc. 8 (1957), 142-146, MR 18, 717.
  • 183. I. Reiner, On the class number of representations of an order, Canad. J. Math. 11 (1959), 660-672. MR 21 #7229.
  • 184. I. Reiner, The nonuniqueness of irreducible constituents of integral group representations, Proc. Amer. Math. Soc. 11 (1960), 655-658. MR 23 #A223.
  • 185. I. Reiner, Behavior of integral group representations under ground ring extension, Illinois J. Math. 4 (1960), 640-651. MR 22 #12145.
  • 186. I. Reiner, The Krull-Schmidt theorem for integral group representations, Bull. Amer. Math. Soc. 67 (1961), 365-367. MR 25 #2132.
  • 187. I. Reiner, Indecomposable representations of non-cyclic groups, Michigan Math. J. 9 (1962), 187-191. MR 25 #3994.
  • 188. I. Reiner, Failure of the Krull-Schmidt theorem for integral representations, Michigan Math. J. 9 (1962), 225-231. MR 26 #2482.
  • 189. I. Reiner, Extensions of irreducible modules, Michigan Math J. 10 (1963), 273-276. MR 27 #5807.
  • 190. I. Reiner, The integral representation ring of a finite group, Michigan Math. J. 12 (1965), 11-22. MR 30 #3152.
  • 191. I. Reiner, Nilpotent elements in rings of integral representations, Proc. Amer. Math. Soc. 17 (1966), 270-274. MR 32 #5745.
  • 192. I. Reiner, Integral representation algebras, Trans. Amer. Math. Soc. 124 (1966), 111-121. MR 34 #2722.
  • 193. I. Reiner, Relations between integral and modular representations, Michigan Math. J. 13 (1966), 357-372. MR 36 #5240.
  • 194. I. Reiner, Module extensions and blocks, J. Algebra 5 (1967), 157-163. MR 35 #4316.
  • 195. I. Reiner, Representation rings, Michigan Math. J. 14 (1967), 385-391. MR 36 #1555.
  • 196. I. Reiner, An involution on K0(ZG), Mat. Zametki 3 (1968), 523-527. (Russian) MR 37 #5270.
  • 197. I. Reiner, A survey of integral representation theory, Proc. Algebra Sympos., University of Kentucky (Lexington, 1968), pp. 8-14.
  • 198. I. Reiner, Maximal orders, Mimeograph Notes, University of Illinois, Urbana, Ill., 1969.
  • 199. I. Reiner and H. Zassenhaus, Equivalence of representations under extensions of local ground rings, Illinois J. Math. 5 (1961), 409-411. MR 23 #A3764.
  • 200. D. S. Rim, Modules over finite groups, Ann. of Math. (2) 69 (1959), 700-712. MR 21 #3474.
  • 201. D. S. Rim, On projective class groups, Trans. Amer. Math. Soc. 98 (1961), 459-467. MR 23 #A1690.
  • 202. K. W. Roggenkamp, Gruppenringe von unendlichem Darstellungstyp, Math. Z. 96 (1967), 393-398. MR 34 #5948.
  • 203. K. W. Roggenkamp, Darstellungen endlicher Gruppen in Polynomringen, Math. Z. 96 (1967), 399-407. MR 34 #5949.
  • 204. K. W. Roggenkamp, Grothendieck groups of hereditary orders, J. Reine Angew. Math. 235 (1969), 29-40.
  • 205. K. W. Roggenkamp, On the irreducible lattices of orders, Canad. J. Math. 21 (1969), 970-976.
  • 206. K. W. Roggenkamp, Das Krull-Schmidt Theorem für projektive Gitter in Ordnungen über lokalen Ringen, Math. Seminar (Giessen, 1969).
  • 207. K. W. Roggenkamp, Projective modules over clean orders, Compositio Math. 21 (1969), 185-194.
  • 208. K. W. Roggenkamp, A necessary and sufficient condition for orders in direct sums of complete skewfields to have only finitely many nonisomorphic indecomposable integral representations, Bull. Amer. Math. Soc. 76 (1969), 130-134.
  • 208a. K. W. Roggenkamp, Projective homorphisms and extensions of lattices, J. Reine Angew. Math. (to appear).
  • 208b. K. W. Roggenkamp and V. H. Dyson, Modules over orders, Springer Lecture Notes (to appear).
  • 209. A. V. Roĭter, On the representations of the cyclic group of fourth order by integral matrices, Vestnik Leningrad. Univ. 15 (1960), no. 19, 65-74. (Russian) MR 23 #A1730.
  • 210. A. V. Roĭter, Categories with division and integral representations, Dokl. Akad. Nauk SSSR 153 (1963), 46-48 = Soviet Math. Dokl. 4 (1963), 1621-1623. MR 33 #2704.
  • 211. A. V. Roĭter, On a category of representations, Ukrain. Mat. Z. 15 (1963), 448-452. (Russian) MR 28 #3072.
  • 212. A. V. Roĭter, On integral representations belonging to a genus, Izv. Akad. Nauk SSSR Ser. Mat. 30 (1966), 1315-1324; English transl., Amer. Math. Soc. Transl. (2) 71 (1968), 49-59. MR 35 #4255.
  • 213. A. V. Roĭter, Divisibility in the category of representations over a complete local Dedekind ring, Ukrain. Mat. Ž. 17 (1965), no. 4, 124-129. (Russian) MR 33 #5699.
  • 214. A. V. Roĭter, E-systems of representations, Ukrain. Mat. Ž. 17 (1965), no. 2, 88-96. (Russian) MR 32 #7620.
  • 215. A. V. Roĭter, An analog of Bass' theorem for representation modules of non-commutative orders, Dokl. Akad. Nauk SSSR 168 (1966), 1261-1264 = Soviet Math. Dokl. 7 (1966), 830-833. MR 34 #2632.
  • 216. A. V. Roĭter, Unboundedness of the dimensions of indecomposable representations of algebras having infinitely many indecomposable representations, Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968), 1275-1282 = Math. USSR Izv. 2 (1968) (to appear).
  • 217. A. V. Roĭter, On the theory of integral representations of rings, Mat. Zametki 3 (1968), 361-366. (Russian) MR 38 #187.
  • 218. J. Rotman, Homological algebra, Van Nostrand, Princeton, N. J., 1970.
  • 219. V. P. Rud'ko, On the integral representation algebra of a cyclic group of order p2, Dopovīdī Akad. Nauk Ukrain. RSR Ser. A 1967, 35-39. (Ukrainian) MR 35 #268.
  • 220. A. I. Saksonov, On group rings of finite p-groups over certain integral domains, Dokl. Akad Nauk BSSR 11 (1967), 204-207. (Russian) MR 35 #270.
  • 221. A. I. Saksonov, Group-algebras of finite groups over a number field, Dokl. Akad. Nauk BSSR 11 (1967), 302-305. MR 35 #1681.
  • 222. O. F. G. Schilling, The theory of valuations, Math. Surveys, no. 4, Amer. Math. Soc., Providence, R. I., 1950. MR 13, 315.
  • 223. H. Schneider and J. Weissglass, Group rings, semigroup rings and their radicals, J. Algebra 5 (1967), 1-15. MR 35 #4317.
  • 224. S. K. Sehgal, On the isomorphism of integral group rings. I, II, Canad. J. Math. 21 (1969), 410-413, 1182-1188.
  • 225. C. S. Seshadri, Triviality of vector bundles over the affine space K2, Proc. Nat. Acad. Sci. U. S. A. 44 (1958), 456-458. MR 21 #1318.
  • 226. C. S. Seshadri, Algebraic vector bundles over the product of an affine curve and the affine line, Proc. Amer. Math. Soc. 10 (1959), 670-673. MR 29 #2263.
  • 226a. M. Singer, Invertible powers of ideals over orders in commutative separable algebras, Proc. Cambridge Philos. Soc. (to appear).
  • 227. D. L. Stancl, Multiplication in Grothendieck rings of integral group rings, J. Algebra 7 (1967), 77-90. MR 36 #6476.
  • 228. E. Steinitz, Rechteckige Systeme und Moduln in algebraischen Zahlenkörpern. I, II, Math. Ann. 71 (1911), 328-354; 72 (1912), 297-345.
  • 229. J. R. Strooker, Faithfully projective modules and clean algebras, Ph.D. Thesis, University of Utrecht, 1965.
  • 230. R. G. Swan, Projective modules over finite groups, Bull. Amer. Math. Soc. 65 (1959), 365-367. MR 22 #5660.
  • 231. R. G. Swan, The p-period of a finite group, Illinois J. Math. 4 (1960), 341-346. MR 23 #A188.
  • 232. R. G. Swan, Induced representations and projective modules, Ann. of Math. (2) 71 (1960), 552-578. MR 25 2131.
  • 233. R. G. Swan, Projective modules over group rings and maximal orders, Ann. of Math. (2) 76 (1962), 55-61. MR 25 #3066.
  • 234. R. G. Swan, The Grothendieck ring of a finite group, Topology 2 (1963), 85-110. MR 27 #3683.
  • 235. R. G. Swan, Algebraic K-theory, Springer Lecture Notes, Berlin, 1968.
  • 236. R. G. Swan, Invariant rational functions and a problem of Steenrod, Invent. Math. 7 (1969), 148-158.
  • 237. R. G. Swan, The number of generators of a module, Math. Z. 102 (1967), 318-322. MR 36 #1434.
  • 238. S. Takahashi, Arithmetic of group representations, Tôhoku Math. J. (2) 11 (1959), 216-246. MR 22 #733.
  • 239. S. Takahashi, A characterization of group rings as a special class of Hopf algebras, Canad. Math. Bull. 8 (1965), 465-475. MR 32 #2459.
  • 240. O. Taussky, On a theorem of Latimer and MacDuffee, Canad. J. Math. 1 (1949), 300-302. MR 11, 3.
  • 241. O. Taussky, Classes of matrices and quadratic fields, Pacific J. Math. 1 (1951), 127-132. MR 13, 201.
  • 242. O. Taussky, Classes of matrices and quadratic fields. II, J. London Math. Soc. 27 (1952), 237-239. MR 13, 717.
  • 243. O. Taussky, Unimodular integral circulants, Math. Z. 63 (1955), 286-289. MR 17, 347.
  • 244. O. Taussky, On matrix classes corresponding to an ideal and its inverse, Illinois J. Math. 1 (1957), 108-113. MR 20 #845.
  • 245. O. Taussky, Matrices of rational integers, Bull. Amer. Math. Soc. 66 (1960), 327-345. MR 22 #10994.
  • 246. O. Taussky, Ideal matrices. I, Arch. Math. 13 (1962), 275-282. MR 27 #168.
  • 247. O. Taussky, Ideal matrices. II, Math. Ann. 150 (1963), 218-225. MR 28 #105.
  • 248. O. Taussky, On the similarity transformation between an integral matrix with irreducible characteristic polynomial and its transpose, Math. Ann. 166 (1966), 60-63. MR 33 #7355.
  • 249. O. Taussky, The discriminant matrices of an algebraic number field, J. London Math. Soc. 43 (1968), 152-154. MR 37 #4053.
  • 250. O. Taussky and J. Todd, Matrices with finite period, Proc. Edinburgh Math. Soc. (2) 6 (1940), 128-134. MR 2, 118.
  • 251. O. Taussky and J. Todd, Matrices of finite period, Proc. Roy. Irish Acad. Sect. A 46 (1941), 113-121. MR 2, 243.
  • 252. O. Taussky and H. Zassenhaus, On the similarity transformation between a matrix and its transpose, Pacific J. Math. 9 (1959), 893-896. MR 21 #7216.
  • 253. John G. Thompson, Vertices and sources, J. Algebra 6 (1967), 1-6. MR 34 #7677.
  • 254. A. Troy, Integral representations of cyclic groups of order p2, Ph.D. Thesis, University of Illinois, Urbana, Ill., 1961.
  • 255. K. Uchida, Remarks on Grothendieck groups, Tôhoku Math. J. (2) 19 (1967), 341-348. MR 37 #2838.
  • 256. S. Ullom, Normal bases in Galois extensions of number fields, Nagoya Math. J. 34 (1969), 153-167.
  • 257. S. Ullom, Galois cohomology of ambiguous ideals, J. Number Theory 1 (1969), 11-15.
  • 258. Y. Watanabe, The Dedekind different and the homological different, Osaka J. Math. 4 (1967), 227-231. MR 37 #2795.
  • 259. Y. Watanabe, The Dedekind different and the homological different of an algebra, J. Math. Soc. Japan (to appear).
  • 260. A. Weil, Basic number theory, Die Grundlehren der Math. Wissenschaften, Band 114, Springer-Verlag, New York, 1967. MR 38 #3244.
  • 261. A. R. Whitcomb, The group ring problem, Ph.D. thesis, University of Chicago, Chicago, Ill., 1968.
  • 262. O. Zariski and P. Samuel, Commutative algebra. Vol. I, University Series in Higher Math., Van Nostrand, Princeton, N. J., 1958. MR 19, 833.
  • 263. H. Zassenhaus, Neuer Beweis der Endlichkeit der Klassenzahl bei unimodularer Aquivalenz endlicher ganzzahliger Substitutionsgruppen, Abh. Math. Sem. Univ. Hamburg 12 (1938), 276-288.
  • 264. H. Zassenhaus, Über die Äquivalenz ganzzahliger Darstellungen, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1967, 167-193. MR 37 #6319.
  • 265. J. Zemanek, On the semisimplicity of integral representation rings, Ph.D. Thesis, University of Illinois, Urbana, Ill., 1970.