Bulletin of the American Mathematical Society

Differentiable dynamical systems

S. Smale

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. Volume 73, Number 6 (1967), 747-817.

Dates
First available: 4 July 2007

Permanent link to this document
http://projecteuclid.org/euclid.bams/1183529092

Mathematical Reviews number (MathSciNet)
MR0228014

Zentralblatt MATH identifier
0202.55202

Citation

Smale, S. Differentiable dynamical systems. Bulletin of the American Mathematical Society 73 (1967), no. 6, 747--817. http://projecteuclid.org/euclid.bams/1183529092.


Export citation

References

  • 1. R. Abraham and J. Marsden, Foundations of mechanics, Benjamin, New York, 1967.
  • 2. R. Abraham and J. Robbin, Transversal mappings and flows, Benjamin, New York, 1967.
  • 3. R. L. Adler, A. G. Konheim and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309-319.
  • 4. R. L. Adler and M. H. McAndrew, The entropy of Chebyshev polynomials, Trans Amer. Math. Soc. 121 (1966), 236-241.
  • 5. R. L. Adler and R. Palais, Homeomorphic-conjugacy of automorphisms on the torus, Proc. Amer. Math. Soc. 16 (1965), 1222-1225.
  • 6. A. Andronov and L. Pontryagin, Systèmes grossiers, Dokl. Akad. Nauk. SSSR 14 (1937), 247-251.
  • 7. D. V. Anosov, Roughness of geodesic flows on compact Riemannian manifolds of negative curvature, Soviet Math. Dokl. 3 (1962), 1068-1070.
  • 8. D. V. Anosov, Ergodic properties of geodesic flows on closed Riemannian manifolds of negative curvature, Soviet Math. Dokl. 4 (1963), 1153-1156.
  • 9. D. V. Anosov, Geodesic flows on compact Riemannian manifolds of negative curvature, Trudy Mat. Inst. Steklov. 90 (1967) = Proc. Steklov Math. Inst. (to appear).
  • 10. V. I. Arnold, Proof of a theorem of A. N. Kolmogorov on the invariance of quasiperiodic motions under small perturbations of the Hamiltonian, Russian Math. Surveys 18 (1963), 9-36.
  • 11. V. I. Arnold and A. Avez, Problèmes ergodiques de la mécanique classique, Gauthier-Villars, Paris, 1966.
  • 12. E. Artin and B. Mazur, On periodic points, Ann. of Math. (2) 81 (1965), 82-99.
  • 12a. L. Auslander, L. Green, F. Hahn et al., Flows on homogeneous spaces, Princeton Univ. Press, Princeton, N. J., 1963.
  • 13. A. Avez, Ergodic theory of dynamical systems, Vols. I, II, Univ. of Minneapolis, Minnesota, 1966, 1967.
  • 14. P. Billingsley, Ergodic theory and information, Wiley, New York, 1965.
  • 15. G. D. Birkhoff, Dynamical systems, Amer. Math. Soc. Colloq. Publ., vol. 9, Amer. Math Soc., Providence, R. I., 1927.
  • 16. G. D. Birkhoff, Surface transformations and their dynamical applications, Acta Math.43 (1920), 1-119.
  • 17. G. D. Birkhoff, On the periodic motions of dynamical systems, Acta Math. So. (1927), 359-379. (See also Birkhoff's Collected Works.)
  • 18. G. D. Birkhoff, Nouvelles recherches sur les systèmes dynamique, Mém. Pont. Acad. Sci. Novi Lyncaei 1 (1935), 85-216.
  • 19. G. D. Birkhoff, Dynamical systems with two degrees of freedom, Trans. Amer. Math. Soc. 18 (1917), 199-300.
  • 20. A. Borel, et al., Seminar on transformation groups, Princeton Univ. Press, Princeton, N. J., 1960.
  • 21. R. Bott, Homogeneous vector bundles, Ann. of Math. (2) 66 (1957), 203-248.
  • 22. W. Boyce, Commuting functions with no common fixed point, Abstract 67T-218, Notices Amer. Math. Soc. 14 (1967), 280.
  • 23. H. Cartan, Seminaire H. Cartan espaces fibrés et homotopie, Mimeographed, Paris, 1949-50.
  • 24. E. Coddington and N. Levinson, Theory of ordinary differential equations, McGraw-Hill, New York, 1955.
  • 25. J. Dieudonné, Foundations of modern analysis, Academic Press, New York, 1960.
  • 26. A. Dold, Fixed point index and fixed point theorem for Euclidean neighborhood retracts, Topology 4 (1965), 1-8.
  • 27. E. Dynkin, The maximal subgroups of the classical groups, Amer. Math. Soc. Transl. (2) 6 (1957), 245-379.
  • 28. R. Ellis, Distal transformation groups, Pacific J. Math. 8 (1958), 401-405.
  • 29. R. Ellis, The construction of minimal discrete flows, Amer. J. Math. 87 (1965), 564-574.
  • 30. L. E. Elsgolts, An estimate for the number of singular points of a dynamical system defined on a manifold, Amer. Math. Soc. Transl. (1) 5 (1962), 498-510 (originally 68 (1952)).
  • 31. F. B. Fuller, The existence of periodic points, Ann. of Math. (2) 57 (1953), 229-230.
  • 32. F. B. Fuller, An index of fixed point type for periodic orbits, Amer. J. Math. 89 (1967), 133-148.
  • 33. H. Furstenberg, The structure of distal flows, Amer. J. Math. 85 (1963), 477-515.
  • 34. I. M. Gelfand and S. V. Fomin, Geodesic flows on manifolds of constant negative curvature, Amer. Math. Soc. Transl. (2) 1 (1955), 49-66.
  • 35. W. H. Gottschalk, Minimal sets: An introduction to topological dynamics, Bull. Amer. Math. Soc. 64 (1958), 336-351.
  • 35a. W. H. Gottschalk and G. A. Hedlund, Topological dynamics, Amer. Math. Soc. Colloq. Publ., vol. 36, Amer. Math. Soc., Providence, R. I., 1955.
  • 36. E. Grosswald, Topics from the theory of numbers, Macmillan, New York, 1966.
  • 37. V. Guillemin and S. Sternberg, On a conjecture of Palais and Smale, Trans. Amer. Math. Soc. (to appear).
  • 38. B. Halpern, Fixed points for iterates, (to appear).
  • 39. P. Hartman, Ordinary differential equations, Wiley, New York, 1964.
  • 40. J. Hadamard, Les surfaces à courbures opposées e leur lignes géodèsiques, J. Math. Pures Appl. 4 (1898), 27-73.
  • 41. A. Haefliger, Variétés feuilletées, Ann. Scuola Norm. Sup. Pisa (3) 16 (1962), 367-397.
  • 42. G. Hedlund, The dynamics of geodesic flows, Bull. Amer. Math. Soc. 45 (1939), 241-246.
  • 43. R. Hermann, Lie groups for physicists, Benjamin, New York, 1966.
  • 44. R. Hermann, The formal linearization of a semisimple Lie algebra of vector fields about a singular point, Trans. Amer. Math. Soc. (to appear).
  • 45. E. Hopf, Ergodic theory, Springer, Berlin, 1937.
  • 46. E. Hopf, Statistik der geodätischen Linien in Mannigfaltigkeiten negativer Krümmung, Ber. Verh. Sächs. Akad. Wiss. Leipzig 91 (1939), 261-304.
  • 47. W. Y. Hsiang, Remarks on differentiable actions of noncompact semi-simple Lie groups on Euclidean spaces, Amer. J. Math. (to appear).
  • 48. W. C. Hsiang, and W. Y. Hsiang, Differentiable actions of compact connected classical groups, Amer. J. Math. (to appear).
  • 49. J. P. Huneke, Two counterexamples to a conjecture on commuting continuous functions of the closed unit interval, Abstract 67T-231, Notices Amer. Math. Soc. 14 (1967), 284.
  • 50. G. Julia, Mémoire sur l'iteration des fonctions rationnelles, J. Math. Pures Appl. 4 (1918), 47-245.
  • 51. S. Kobayashi and J. Eells, Problems in differential geometry, Proc. Japan-United States Seminar in Differential Geometry, Kyoto, Japan 1965, Nippon Hyoransha, Tokyo, 1966, pp. 167-177.
  • 52. A. N. Kolmogoroff, On conservation of conditionally periodic motions for a small charge in Hamilton's function, Dokl. Akad. Nauk SSSR 98 (1954), 527-530. (Russian)
  • 53. N. Kopell, Thesis, Univ. of California, Berkeley, 1967.
  • 54. B. Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math. (2) 74 (1961), 329-387.
  • 55. I. Kupka, Contribution à la théorie des champs génériques, Contributions to Differential Equations 2 (1963), 457-484.
  • 56. S. Lang, Introduction to differentiable manifolds, Wiley, New York, 1962.
  • 57. S. Lefschetz, Differential equations: Geometric theory, Interscience, New York, 1957.
  • 58. N. Levinson, A second order differential equation with singular solutions, Ann. of Math. (2) 50 (1949), 127-153.
  • 59. E. Lima, Commuting vector fields on S3, Ann. of Math. (2) 81 (1965), 70-81.
  • 60. E. Lima, Common singularities of commuting vector fields on 2-manifolds, Comment. Math. Helv. 39 (1964), 97-110.
  • 61. A. Malcev, On a class of homogeneous spaces, Amer. Math. Soc. Transl. (1) 9 (1962), 276-307 (originally 39 (1951)).
  • 62. L. Markus, Structurally stable differential systems, Ann. of Math. (2) 73 (1961), 1-19.
  • 63. Y. Matsushima, On the discrete subgroups and homogeneous spaces of nilpotent Lie groups, Nagoya Math. J. 2 (1951), 95-110.
  • 64. F. Mautner, Geodesic flows on symmetric Riemann spaces, Ann. of Math. (2) 65 (1957), 416-431.
  • 65. K. Meyer, Energy functions for Morse-Smale systems, Amer. J. Math, (to appear).
  • 66. D. Montgomery and L. Zippen, Topological transformation groups, Interscience, New York, 1955.
  • 67. C. Moore, Distal affine transformation groups, Amer. J. Math (to appear).
  • 68. M. Morse, The calculus of variations in the large, Amer. Math. Soc. Colloq. Publ., vol. 18, Amer. Math. Soc., Providence, R. I., 1934.
  • 69. M. Morse, A one to one representation of geodesics on a surface of negative curvature, Amer. J. Math. 43 (1921), 33-51.
  • 70. J. Moser, On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen Math.-Phys. K1. II 1962, 1-20.
  • 71. J. Moser, Perturbation theory for almost periodic solutions for undamped nonlinear differential equations, Internat. Sympos. Nonlinear Differential Equations and Nonlinear Mechanics, Academic Press, New York, 1963, pp. 71-79.
  • 72. G. D. Mostow, The extensibility of local Lie groups of transformations and groups on surfaces, Ann. of Math. (2) 52 (1950), 606-636.
  • 73. J. Nash, Real algebraic manifolds, Ann. of Math. (2) 56 (1952), 405-421.
  • 74. V. V. Nemytskii, Some modern problems in the qualitative theory of ordinary differential equations, Russian Math. Surveys 20 (1965), 1-35.
  • 75. K. Nomizu, On the cohomology of compact homogeneous spaces of nilpotent Lie groups, Ann. of Math. (2) 59 (1954), 531-538.
  • 76. S. P. Novikov, The topology summer Institute, Seattle 1963, Russian Math. Surveys 20 (1965), 145-167.
  • 77. S. P. Novikov, Smooth foliations on three-dimensional manifolds, Russian Math. Surveys 19 (1964) No. 6, 79-81.
  • 78. J. C. Oxtoby and S. M. Ulam, Measure-preserving homeomorphisms and metrical transitivity, Ann. of Math. (2) 42 (1941), 874-920.
  • 79. R. S. Palais, On the existence of slices for actions of non-compact Lie groups, Ann. of Math. (2) 73 (1961), 295-323.
  • 80. R. S. Palais, Equivalence of nearby differentiate actions of a compact group, Bull. Amer. Math. Soc. 67 (1961), 362-364.
  • 81. R. S. Palais and T. Stewart, Deformations of compact differentiate transformation groups, Amer. J. Math. 82 (1960), 935-937.
  • 82. J. Palis, Thesis, Univ. of California, Berkeley, 1967.
  • 83. M. Peixoto, On structural stability, Ann. of Math. (2) 69 (1959), 199-222.
  • 84. M. Peixoto, Structural stability on two-dimensional manifolds, Topology 1 (1962), 101-120.
  • 85. M. Peixoto, Symposium on Differential Equations and Dynamical Systems (Puerto Rico) Academic Press, New York, 1967.
  • 86. M. Peixoto, On an approximation theorem of Kupka and Smale, J. Differential equations 3 (1967), 214-227.
  • 87. M. Peixoto and C. Pugh, Structurally stable systems on open manifolds are never dense, (to appear).
  • 88. O. Perron, Die stabilitatsfrage bei differentialgleichungen, Math. Z. 32 (1930), 703-728.
  • 89. H. Poincaré, Sur les courbes dèfinies par des équations différentielles, J. Math. 4° serie 1885.
  • 90. H. Poincaré, Les méthodes nouvelles de la mécanique céleste, Vols. I, II, III, Paris, 1892, 1893, 1899; reprint, Dover, New York, 1957.
  • 91. C. Pugh, The closing lemma, Amer. J. Math. (to appear)
  • 92. C. Pugh, An improved closing lemma and a general density theorem, Amer. J. Math. (to appear).
  • 93. C. Pugh, The closing lemma for Hamiltonian systems, Proc. Internat. Congress Math. at Moscow, 1966.
  • 94. G. Reeb, Sur certaines propriétés topologiques des trajectoires des systemes dynamiques, Acad. Roy. Belg. Cl. Sci. Mem. Coll. 8° 27 (1952), no. 9.
  • 95. L. Reizinš, On systems of differential equations satisfying Smales conditions, Latvijas PSR Zinatnu Akad. Vestis Fiz. Tehn. Zinatnu Ser. 1964, 57-61. (Russian)
  • 96. F. Riesz, and B. Nagy, Functional analysis, Ungar, New York, 1955.
  • 97. H. Rosenberg, A generalization of Morse-Smale inequalities, Bull. Amer. Math. Soc. 70 (1964), 422-427.
  • 98. H. Rosenberg, Actions of Rn on manifolds, Comment. Math. Helv. 41 (1966-67), 170-178.
  • 99. R. Sacksteder, Foliations and pseudo-groups, Amer. J. Math. 87 (1965), 79-102.
  • 100. R. Sacksteder, Degeneracy of orbits of actions of Rn on a manifold, Comment. Math. Helv. 41 (1966-67), 1-9.
  • 101. O. F. G. Shilling, Arithmetical algebraic geometry, Harper and Row, New York, 1956.
  • 102. A. J. Schwartz, A generalization of a Poincaré-Bendixon theorem to closed two-dimensional manifolds, Amer. J. Math. 85 (1963), 453-458.
  • 103. A. J. Schwartz, Common periodic points of commuting functions, Michigan Math. J.12 (1965), 353-355.
  • 104. A. Schwartz, Vector fields on a solid torus (to appear).
  • 105. H. Seifert, Closed integral curves in 3-space and isotopic two-dimensional deformations, Proc. Amer. Math. Soc. 1 (1950), 287-302.
  • 106. A. Selberg, Harmonic-analysis and discontinuous groups in weakly symmetric Riemann spaces with applications to Dirichlet series, J. Indian Math. Soc. 20 (1956), 47-87.
  • 107. L. P. Shil'nikov, The existence of an enumerable set of periodic motions in the neighborhood of a homoclinic curve, Dokl. Akad. Nauk SSSR 172 (1967), 298-301 = Soviet Math. Dokl. 8 (1967), 102-106.
  • 108. M. Shub, Thesis, Univ. of California, Berkeley, 1967.
  • 109. S. Smale, Morse inequalities for a dynamical system, Bull. Amer. Math. Soc.66 (1960), 43-49.
  • 110. S. Smale, On gradient dynamical systems, Ann. of Math. (2) 74 (1961), 199-206.
  • 111. S. Smale, On dynamical systems, Bol. Soc. Mat. Mexicana (2) 5 (1960), 195-198.
  • 112. S. Smale, Dynamical systems and the topological conjugacy problem for diffeomorphisms, Proc. Internat. Congress Math. (Stockholm, 1962), Inst. Mittag-Leffler, Djursholm, 1963, pp. 490-496.
  • 113. S. Smale, A structurally stable differentiate homeomorphism with an infinite number of periodic points, Proc. Internat. Sympos. Non-linear Vibrations, vol. II, 1961, Izdat. Akad. Nauk Ukrain SSR, Kiev, 1963.
  • 114. S. Smale, Stable manifolds for differential equations and diffeomorphisms, Ann. Scuola Norm. Sup. Pisa (3) 17 (1963), 97-116.
  • 115. S. Smale, Diffeomorphisms with many periodic points, Differential and Combinatorial Topology, Princeton Univ. Press, Princeton, N. J., 1965, pp. 63-80.
  • 116. S. Smale, Structurally stable systems are not dense, Amer. J. Math. 88 (1966), 491-496.
  • 117. S. Smale, Dynamical systems on n-dimensional manifolds, Symposium on differential equations and dynamical systems (Puerto Rico) Academic Press, New York, 1967.
  • 118. J. Sotomayor, Generic one-parameter families of vector fields on two-dimensional manifolds (to appear).
  • 119. P. R. Stein and S. M. Ulam, Non-linear transformations studies on electronic computers, Rozprawy Mat. 39 (1964).
  • 120. S. Sternberg, Local contractions and a theorem of Poincaré, Amer. J. Math.79 (1957), 787-789.
  • 121. S. Sternberg, On the structure of local homeomorphisms of Euclidean n-space. II, Amer. J. Math. 80 (1958), 623-631.
  • 122. S. Sternberg, The structure of local homeomorphisms, III, Amer. J. Math. 81 (1959), 578-604.
  • 123. S. Sternberg, Lectures on differential geometry, Prentice-Hall, Englewood Cliffs, N. J., 1964.
  • 124. R. Thorn, Sur une partition en cellules associés à unefunction sur une variété, C. R. Acad. Sci. Paris 228 (1949), 973-975.
  • 125. A. Weil, Adeles and algebraic groups, Notes, Institute for Advanced Study, Princeton, N. J., 1961.
  • 126. A. Weil, On discrete subgroups of Lie groups, II, Ann. of Math. (2) 75 (1962), 578-602.
  • 127. R. Williams, One dimensional non-wandering sets (to appear).