Bulletin of the American Mathematical Society

The Kline sphere characterization problem

R. H. Bing

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. Volume 52, Number 8 (1946), 644-653.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
http://projecteuclid.org/euclid.bams/1183509570

Mathematical Reviews number (MathSciNet)
MR0016645

Zentralblatt MATH identifier
0060.40501

Citation

Bing, R. H. The Kline sphere characterization problem. Bull. Amer. Math. Soc. 52 (1946), no. 8, 644--653. http://projecteuclid.org/euclid.bams/1183509570.


Export citation

References

  • 1. D. W. Hall, A partial solution of a problem of J. R. Kline, Duke Math. J. vol. 9 (1942) pp. 893-901.
  • 2. D. W. Hall, A note on primitive skew curves, Bull. Amer. Math. Soc. vol. 49 (1943) pp. 935-936.
  • 3. F. B. Jones, Bull. Amer. Math. Soc. Abstract 48-11-340.
  • 4. C. Kuratowski, Une caractérisation topologique de la surface de la sphère, Fund. Math. vol. 13 (1929) pp. 307-318.
  • 5. L. Zippin, A study of continuous curves and their relation to the Janiszewski-Mullikin Theorem, Trans. Amer. Math. Soc. vol. 31 (1929) pp. 744-770.
  • 6. L. Zippin, On continuous curves and the Jordan Curve Theorem, Amer. J. Math. vol. 52 (1930) pp. 331-350.
  • 7. R. L. Wilder, A converse of the Jordan-Brouwer separation theorem in three dimensions, Trans. Amer. Math. Soc. vol. 32 (1930) pp. 632-651.
  • 8. S. Claytor, Topological immersion of Peanian continua in a spherical surface, Ann. of Math. vol. 35 (1934) pp. 809-835.
  • 9. R. L. Moore, Concerning a set of postulates for plane analysis situs, Trans. Amer. Math. Soc. vol. 20 (1919) pp. 169-178.
  • 10. E. R. van Kampen, On some characterizations of 2-dimensional manifolds, Duke Math. J. vol. 1 (1935) pp. 74-93.